Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 8(17): eabl5394, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35486722

RESUMEN

Understanding peptide presentation by specific MHC alleles is fundamental for controlling physiological functions of T cells and harnessing them for therapeutic use. However, commonly used in silico predictions and mass spectroscopy have their limitations in precision, sensitivity, and throughput, particularly for MHC class II. Here, we present MEDi, a novel mammalian epitope display that allows an unbiased, affordable, high-resolution mapping of MHC peptide presentation capacity. Our platform provides a detailed picture by testing every antigen-derived peptide and is scalable to all the MHC II alleles. Given the urgent need to understand immune evasion for formulating effective responses to threats such as SARS-CoV-2, we provide a comprehensive analysis of the presentability of all SARS-CoV-2 peptides in the context of several HLA class II alleles. We show that several mutations arising in viral strains expanding globally resulted in reduced peptide presentability by multiple HLA class II alleles, while some increased it, suggesting alteration of MHC II presentation landscapes as a possible immune escape mechanism.


Asunto(s)
COVID-19 , Antígenos de Histocompatibilidad Clase II , Animales , Presentación de Antígeno , Linfocitos T CD4-Positivos , Antígenos de Histocompatibilidad Clase II/genética , Mamíferos , Péptidos , SARS-CoV-2
2.
Cell Rep ; 12(6): 1032-41, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26235618

RESUMEN

In the axial channels of ClpX and related hexameric AAA+ protein-remodeling rings, the pore-1 loops are thought to play important roles in engaging, mechanically unfolding, and translocating protein substrates. How these loops perform these functions and whether they also prevent substrate dissociation to ensure processive degradation by AAA+ proteases are open questions. Using ClpX pore-1-loop variants, single-molecule force spectroscopy, and ensemble assays, we find that the six pore-1 loops function synchronously to grip and unfold protein substrates during a power stroke but are not important in preventing substrate slipping between power strokes. The importance of grip strength is task dependent. ClpX variants with multiple mutant pore-1 loops translocate substrates as well as the wild-type enzyme against a resisting force but show unfolding defects and a higher frequency of substrate release. These problems are magnified for more mechanically stable target proteins, supporting a threshold model of substrate gripping.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Mutación , Pliegue de Proteína , Rhodococcus/metabolismo
4.
Nat Chem Biol ; 11(3): 201-6, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25599533

RESUMEN

Hexameric ATP-dependent proteases and protein remodeling machines use conserved loops that line the axial pore to apply force to substrates during the mechanical processes of protein unfolding and translocation. Whether loops from multiple subunits act independently or coordinately in these processes is a critical aspect of the mechanism but is currently unknown for any AAA+ machine. By studying covalently linked hexamers of the Escherichia coli ClpX unfoldase bearing different numbers and configurations of wild-type and mutant pore loops, we show that loops function synergistically, and the number of wild-type loops required for efficient degradation is dependent on the stability of the protein substrate. Our results support a mechanism in which a power stroke initiated in one subunit of the ClpX hexamer results in the concurrent movement of all six pore loops, which coordinately grip and apply force to the substrate.


Asunto(s)
Proteasas ATP-Dependientes/química , Péptido Hidrolasas/química , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/química , Adenosina Trifosfato/metabolismo , Endopeptidasa Clp/química , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/química , Chaperonas Moleculares/química , Mutación , Desplegamiento Proteico , Especificidad por Sustrato , Translocación Genética
5.
Nat Struct Mol Biol ; 21(10): 871-5, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25195048

RESUMEN

Molecular machines containing double or single AAA+ rings power energy-dependent protein degradation and other critical cellular processes, including disaggregation and remodeling of macromolecular complexes. How the mechanical activities of double-ring and single-ring AAA+ enzymes differ is unknown. Using single-molecule optical trapping, we determine how the double-ring ClpA enzyme from Escherichia coli, in complex with the ClpP peptidase, mechanically degrades proteins. We demonstrate that ClpA unfolds some protein substrates substantially faster than does the single-ring ClpX enzyme, which also degrades substrates in collaboration with ClpP. We find that ClpA is a slower polypeptide translocase and that it moves in physical steps that are smaller and more regular than steps taken by ClpX. These direct measurements of protein unfolding and translocation define the core mechanochemical behavior of a double-ring AAA+ machine and provide insight into the degradation of proteins that unfold via metastable intermediates.


Asunto(s)
Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteolisis , Adenosina Trifosfato/metabolismo , Endopeptidasa Clp/química , Proteínas de Escherichia coli/química , Hidrólisis , Pinzas Ópticas , Desplegamiento Proteico
6.
J Biol Chem ; 289(21): 15014-22, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24719326

RESUMEN

Mortalin/GRP75, the mitochondrial heat shock protein 70, plays a role in cell protection from complement-dependent cytotoxicity (CDC). As shown here, interference with mortalin synthesis enhances sensitivity of K562 erythroleukemia cells to CDC, whereas overexpression of mortalin leads to their resistance to CDC. Quantification of the binding of the C5b-9 membrane attack complex to cells during complement activation shows an inverse correlation between C5b-9 deposition and the level of mortalin in the cell. Following transfection, mortalin-enhanced GFP (EGFP) is located primarily in mitochondria, whereas mortalinΔ51-EGFP lacking the mitochondrial targeting sequence is distributed throughout the cytoplasm. Overexpressed cytosolic mortalinΔ51-EGFP has a reduced protective capacity against CDC relative to mitochondrial mortalin-EGFP. Mortalin was previously shown by us to bind to components of the C5b-9 complex. Two functional domains of mortalin, the N-terminal ATPase domain and the C-terminal substrate-binding domain, were purified after expression in bacteria. Similar to intact mortalin, the ATPase domain, but not the substrate-binding domain, was found to bind to complement proteins C8 and C9 and to inhibit zinc-induced polymerization of C9. Binding of mortalin to complement C9 and C8 occurs through an ionic interaction that is nucleotide-sensitive. We suggest that to express its full protective effect from CDC, mortalin must first reach the mitochondria. In addition, mortalin can potentially target the C8 and C9 complement components through its ATPase domain and inhibit C5b-9 assembly and stability.


Asunto(s)
Complemento C9/inmunología , Proteínas del Sistema Complemento/inmunología , Citotoxicidad Inmunológica/inmunología , Proteínas HSP70 de Choque Térmico/inmunología , Adenosina Difosfato/inmunología , Adenosina Difosfato/farmacología , Adenosina Trifosfatasas/inmunología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/inmunología , Adenosina Trifosfato/farmacología , Sitios de Unión/genética , Sitios de Unión/inmunología , Western Blotting , Complemento C9/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Células K562 , Microscopía Confocal , Unión Proteica/efectos de los fármacos , Unión Proteica/inmunología , Interferencia de ARN , Cloruro de Sodio/inmunología , Cloruro de Sodio/farmacología
7.
Cell Stress Chaperones ; 17(1): 57-66, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21811887

RESUMEN

The mitochondrial 70-kDa heat shock protein (mtHsp70), also known in humans as mortalin, is a central component of the mitochondrial protein import motor and plays a key role in the folding of matrix-localized mitochondrial proteins. MtHsp70 is assisted by a member of the 40-kDa heat shock protein co-chaperone family named Tid1 and a nucleotide exchange factor. Whereas, yeast mtHsp70 has been extensively studied in the context of protein import in the mitochondria, and the bacterial 70-kDa heat shock protein was recently shown to act as an ATP-fuelled unfolding enzyme capable of detoxifying stably misfolded polypeptides into harmless natively refolded proteins, little is known about the molecular functions of the human mortalin in protein homeostasis. Here, we developed novel and efficient purification protocols for mortalin and the two spliced versions of Tid1, Tid1-S, and Tid1-L and showed that mortalin can mediate the in vitro ATP-dependent reactivation of stable-preformed heat-denatured model aggregates, with the assistance of Mge1 and either Tid1-L or Tid1-S co-chaperones or yeast Mdj1. Thus, in addition of being a central component of the protein import machinery, human mortalin together with Tid1, may serve as a protein disaggregating machine which, for lack of Hsp100/ClpB disaggregating co-chaperones, may carry alone the scavenging of toxic protein aggregates in stressed, diseased, or aging human mitochondria.


Asunto(s)
Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Acetiltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Elongasas de Ácidos Grasos , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/aislamiento & purificación , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
FEBS Lett ; 584(6): 1080-4, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20153329

RESUMEN

Previous studies have shown that the mammalian mitochondrial 70 kDa heat-shock protein (mortalin) can also be detected in the cytosol. Cytosolic mortalin binds p53 and by doing so, prevents translocation of the tumor suppressor into the nucleus. In this study, we developed a novel binding assay, using purified proteins, for tracking the interaction between p53 and mortalin. Our results reveal that: (i) P53 binds to the peptide-binding site of mortalin which enhances the ability of the former to bind DNA. (ii) An additional previously unknown binding site for mortalin exists within the C-terminal domain of p53.


Asunto(s)
Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Mapeo de Interacción de Proteínas , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Sitios de Unión , ADN/metabolismo , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Humanos , Mitocondrias/química , Mitocondrias/metabolismo , Nucleótidos/farmacología , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Mapeo de Interacción de Proteínas/métodos , Multimerización de Proteína/efectos de los fármacos , Proteínas/aislamiento & purificación , Proteínas/metabolismo , Proteína p53 Supresora de Tumor/aislamiento & purificación
9.
Int J Mol Sci ; 10(5): 2041-2053, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19564938

RESUMEN

Most of our knowledge regarding the process of protein import into mitochondria has come from research employing Saccharomyces cerevisiae as a model system. Recently, several mammalian homologues of the mitochondrial motor proteins were identified. Of particular interest for us is the human Tim14/Pam18-Tim16/Pam16 complex. We chose a structural approach in order to examine the evolutionary conservation between yeast Tim14/Pam18-Tim16/Pam16 proteins and their human homologues. For this purpose, we examined the structural properties of the purified human proteins and their interaction with their yeast homologues, in vitro. Our results show that the soluble domains of the human Tim14/Pam18 and Tim16/Pam16 proteins interact with their yeast counterparts, forming heterodimeric complexes and that these complexes interact with yeast mtHsp70.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/farmacocinética , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
10.
J Biol Chem ; 282(47): 33935-42, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17881357

RESUMEN

The final step of protein translocation across the mitochondrial inner membrane is mediated by a translocation motor composed of 1) the matrix-localized, ATP-hydrolyzing, 70-kDa heat shock protein mHsp70; 2) its anchor to the import channel, Tim44; 3) the nucleotide exchange factor Mge1; and 4) a J-domain-containing complex of co-chaperones, Tim14/Pam18-Tim16/Pam16. Despite its essential role in the biogenesis of mitochondria, the mechanism by which the translocation motor functions is still largely unknown. The goal of this work was to carry out a structure-function analysis of the mitochondrial translocation motor utilizing purified components, with an emphasis on the formation of the Tim44-mHsp70 complex. To this end, we purified Tim44 and monitored its interaction with other components of the motor using cross-linking with bifunctional reagents. The effects of nucleotides, the J-domain-containing components, and the P5 peptide (CALLSAPRR, representing part of the mitochondrial targeting signal of aspartate aminotransferase) on the formation of the translocation motor were examined. Our results show that only the peptide and nucleotides, but not J-domain-containing proteins, affect the Tim44-mHsp70 interaction. Additionally, binding of Tim44 to mHsp70 prevents the formation of a complex between the latter and Tim14/Pam18-Tim16/Pam16. Thus, mutually exclusive interactions between various components of the motor with mHsp70 regulate its functional cycle. The results are discussed in light of known models for the function of the mitochondrial translocation motor.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/aislamiento & purificación , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/aislamiento & purificación , Mitocondrias/química , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/aislamiento & purificación , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Chaperonas Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
11.
Protein Sci ; 16(2): 316-22, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17242434

RESUMEN

The vast majority of mitochondrial proteins are imported from the cytosol. For matrix-localized proteins, the final step of translocation across the inner membrane is mediated by the mitochondrial translocation motor, of which mhsp70 is a key component. The ATP-dependent function of mhsp70 is regulated by a complex, composed of a J-protein (called Pam18 or Tim14) and a J-like protein (called Pam16 or Tim16), and the nucleotide exchange factor Mge1. In this study, we investigated the structural properties of a recombinant purified Pam18/Tim14-Pam16/Tim16 complex using cross-linking with the bifunctional reagent DSS and CD-spectroscopy. The results of the study show that both Pam18/Tim14 and Pam16/Tim16 are thermally unstable proteins that unfold at very low temperatures (T(m) values of 16.5 degrees C and 29 degrees C, respectively). Upon mixing the proteins in vitro, or when both proteins are co-overexpressed in bacteria, Pam18/Tim14 and Pam16/Tim16 form a heterodimer that is thermally more stable than the individual proteins (T(m) = 41 degrees C). Analysis of the properties of the complex in GdnHCl shows that dissociation of the heterodimer is the limiting step in achieving full denaturation.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dicroismo Circular , Clonación Molecular , Dimerización , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA