Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38543416

RESUMEN

The brittle behavior of poly(lactic acid) (PLA) and PLA composites with inorganic filler limits their applications; the addition of a toughening agent, such as a rubbery phase, was selected to transform the brittle to ductile behavior for versatility in various applications. This work aims to study the properties of PLA and PLA composite with filled nanosized hydroxyapatite (nHA) after adding modified natural rubber (MoNR), which acts as a toughening agent. MoNR refers to poly(acrylic acid-co-acrylamide)-grafted deproteinized natural rubber. nHA was prepared from fish scales. Its characteristics were investigated and was confirmed to be comparable to those of commercial grade. PLA-MoNR at various MoNR contents and PLA/nHA composites with/without MoNR were prepared by melt mixing. Their morphology, mechanical, and thermal properties were observed and investigated. Samples with MoNR added showed the dispersion of spherical particles, indicating incompatibility. However, the mechanical properties of PLA-MoNR, which had MoNR added at 10 phr, showed toughening behavior (increased impact strength by more than two times compared to that of neat PLA). The PLA/nHA composite with MoNR showed the same result. The addition of MoNR in the composite increased its impact strength by 1.27 times compared to the composite without MoNR. MoNR can be a stress concentrator, resulting in toughened PLA and PLA/nHA composite.

2.
Polymers (Basel) ; 15(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36904502

RESUMEN

Biodegradable polymers play a significant role in medical applications, especially internal devices because they can be broken down and absorbed into the body without producing harmful degradation products. In this study, biodegradable polylactic acid (PLA)-polyhydroxyalkanoate (PHA)-based nanocomposites with various PHA and nano-hydroxyapatite (nHAp) contents were prepared using solution casting method. Mechanical properties, microstructure, thermal stability, thermal properties, and in vitro degradation of the PLA-PHA-based composites were investigated. PLA-20PHA/5nHAp was shown to give the desired properties so it was selected to investigate electrospinnability at different applied high voltages. PLA-20PHA/5nHAp composite shows the highest improvement of tensile strength at 36.6 ± 0.7 MPa, while PLA-20PHA/10nHAp composite shows the highest thermal stability and in vitro degradation at 7.55% of weight loss after 56 days of immersion in PBS solution. The addition of PHA in PLA-PHA-based nanocomposites improved elongation at break, compared to the composite without PHA. PLA-20PHA/5nHAp solution was successfully fabricated into fibers by electrospinning. All obtained fibers showed smooth and continuous fibers without beads with diameters of 3.7 ± 0.9, 3.5 ± 1.2, and 2.1 ± 0.7 µm at applied high voltages of 15, 20, and 25 kV, respectively.

3.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36772030

RESUMEN

This work aims to enhance the mechanical properties, oil resistance, and thermal properties of acrylonitrile butadiene rubber (NBR) by using the Nile tilapia fish scales as a filler and using bis(triethoxysilylpropyl)tetrasulfide (TESPT) as a coupling agent (CA). The prepared fish scale particles (FSp) are B-type hydroxyapatite and the particle shape is rod-like. The filled NBR with FSp at 10 phr increased tensile strength up to 180% (4.56 ± 0.48 MPa), reduced oil absorption up to 155%, and increased the decomposition temperature up to 4 °C, relative to the unfilled NBR. The addition of CA into filled NBR with FSp at 10 phr increased tensile strength up to 123% (5.62 ± 0.42 MPa) and percentage of elongation at break up to 122% relative to the filled NBR with FSp at 10 phr. This work demonstrated that the prepared FSp from the Nile tilapia fish scales can be used as a reinforcement filler to enhance the NBR properties for use in many high-performance applications.

4.
Polymers (Basel) ; 14(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36236110

RESUMEN

Nano-hydroxyapatite (nHAp) as a bio-filler used in PLA composites was prepared from fish by acid deproteinization (1DP) and a combination of acid-alkali deproteinization (2DP) followed by alkali heat treatment. Moreover, the PLA/nHAp composite films were developed using solution casting method. The mechanical and thermal properties of the PLA composite films with nHAp from different steps deproteinization and contents were compared. The physical properties analysis confirmed that the nHAp can be prepared from fish scales using both steps deproteinization. 1DP-nHAp showed higher surface area and lower crystallinity than 2DP-nHAp. This gave advantage of 1DP-nHAp for use as filler. PLA composite with 1DP-nHAp gave tensile strength of 66.41 ± 3.63 MPa and Young's modulus of 2.65 ± 0.05 GPa which were higher than 2DP-nHAp at the same content. The addition of 5 phr 1DP-nHAp into PLA significantly improved the tensile strength and Young's modulus. PLA composite solution with 1DP-nHAp at 5 phr showed electrospinnability by giving continuous fibers without beads.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA