Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904600

RESUMEN

The integration of global navigation satellite system (GNSS) precise point positioning (PPP) and inertial navigation system (INS) is widely used in navigation for its robustness and resilience, especially in case of GNSS signal blockage. With GNSS modernization, a variety of PPP models have been developed and studied, which has also led to various PPP/INS integration methods. In this study, we investigated the performance of a real-time GPS/Galileo zero-difference ionosphere-free (IF) PPP/INS integration with the application of uncombined bias products. This uncombined bias correction was independent of PPP modeling on the user side and also enabled carrier phase ambiguity resolution (AR). CNES (Centre National d'Etudes Spatiales) real-time orbit, clock, and uncombined bias products were used. Six positioning modes were evaluated, including PPP, PPP/INS loosely coupled integration (LCI), PPP/INS tightly coupled integration (TCI), and three of these with uncombined bias correction through a train positioning test in an open sky environment and two van positioning tests at a complex road and city center. All of the tests used a tactical-grade inertial measurement unit (IMU). In the train test, we found that ambiguity-float PPP had almost identical performance with LCI and TCI, which reached an accuracy of 8.5, 5.7, and 4.9 cm in the north (N), east (E) and up (U) direction, respectively. After AR, significant improvements on the east error component were achieved, which were 47%, 40%, and 38% for PPP-AR, PPP-AR/INS LCI, and PPP-AR/INS TCI, respectively. In the van tests, frequent signal interruptions due to bridges, vegetation, and city canyons make the IF AR difficult. TCI achieved the highest accuracies, which were 32, 29, and 41 cm for the N/E/U component, respectively, and also effectively eliminated the solution re-convergence in PPP.

2.
Sensors (Basel) ; 18(3)2018 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-29510534

RESUMEN

Structural Health Monitoring (SHM) is a relatively new branch of civil engineering that focuses on assessing the health status of infrastructure, such as long-span bridges. Using a broad range of in-situ monitoring instruments, the purpose of the SHM is to help engineers understand the behaviour of structures, ensuring their structural integrity and the safety of the public. Under the Integrated Applications Promotion (IAP) scheme of the European Space Agency (ESA), a feasibility study (FS) project that used the Global Navigation Satellite Systems (GNSS) and Earth Observation (EO) for Structural Health Monitoring of Long-span Bridges (GeoSHM) was initiated in 2013. The GeoSHM FS Project was led by University of Nottingham and the Forth Road Bridge (Scotland, UK), which is a 2.5 km long suspension bridge across the Firth of Forth connecting Edinburgh and the Northern part of Scotland, was selected as the test structure for the GeoSHM FS project. Initial results have shown the significant potential of the GNSS and EO technologies. With these successes, the FS project was further extended to the demonstration stage, which is called the GeoSHM Demo project where two other long-span bridges in China were included as test structures. Led by UbiPOS UK Ltd. (Nottingham, UK), a Nottingham Hi-tech company, this stage focuses on addressing limitations identified during the feasibility study and developing an innovative data strategy to process, store, and interpret monitoring data. This paper will present an overview of the motivation and challenges of the GeoSHM Demo Project, a description of the software and hardware architecture and a discussion of some primary results that were obtained in the last three years.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA