Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Org Lett ; 13(7): 1638-41, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21375229

RESUMEN

Our recent findings of the first epoxide hydrolase Lsd19, involved in lasalocid A biosynthesis, led us to investigate a long-standing controversial issue on the mechanism of enzymatic epoxide-opening cascades. The site-directed mutagenesis and domain dissection analysis to reveal the mechanism of the reaction catalyzed by Lsd19 is examined, especially in the role of acidic amino acid pair and catalytic domains.


Asunto(s)
Biocatálisis , Epóxido Hidrolasas/metabolismo , Compuestos Epoxi/química , Éteres/química , Ionóforos/química , Compuestos Epoxi/metabolismo , Éteres/metabolismo , Estructura Molecular
2.
J Am Chem Soc ; 131(26): 9347-53, 2009 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-19514719

RESUMEN

Natural products display impressive activities against a wide range of targets, including viruses, microbes, and tumors. However, their clinical use is hampered frequently by their scarcity and undesirable toxicity. Not only can engineering Escherichia coli for plasmid-based pharmacophore biosynthesis offer alternative means of simple and easily scalable production of valuable yet hard-to-obtain compounds, but also carries a potential for providing a straightforward and efficient means of preparing natural product analogs. The quinomycin family of nonribosomal peptides, including echinomycin, triostin A, and SW-163s, are important secondary metabolites imparting antibiotic antitumor activity via DNA bisintercalation. Previously we have shown the production of echinomycin and triostin A in E. coli using our convenient and modular plasmid system to introduce these heterologous biosynthetic pathways into E. coli. However, we have yet to develop a novel biosynthetic pathway capable of producing bioactive unnatural natural products in E. coli. Here we report an identification of a new gene cluster responsible for the biosynthesis of SW-163s that involves previously unknown biosynthesis of (+)-(1S, 2S)-norcoronamic acid and generation of aliphatic side chains of various sizes via iterative methylation of an unactivated carbon center. Substituting an echinomycin biosynthetic gene with a gene from the newly identified SW-163 biosynthetic gene cluster, we were able to rationally re-engineer the plasmid-based echinomycin biosynthetic pathway for the production of a novel bioactive compound in E. coli.


Asunto(s)
Antibacterianos/biosíntesis , Equinomicina/biosíntesis , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Antibacterianos/química , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Vías Biosintéticas , Equinomicina/análogos & derivados , Equinomicina/farmacología , Proteínas de Escherichia coli/genética , Genes Bacterianos , Familia de Multigenes , Streptomyces/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA