Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 8(11): e11624, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36425431

RESUMEN

Cardiac muscle cells have an innate capacity to perceive and react to mechanical strain via a mechanism known as mechanotransduction, whereby the cardiac muscle cells are intrinsically capable of sensing and responding to mechanical strain. This process occurs in the heart when mechanical inputs are converted to biochemical processes that result in myocardial structure and function changes. Mechanotransduction and its downstream effects work as compensatory mechanisms during early load adaptation. However, prolonged, and aberrant loading may cause maladaptive remodeling, resulting in altered physiological function, pathological cardiac hypertrophy, and heart failure. The rapid advancement of stem cell research has raised the hopes of both patients and clinicians. Mesenchymal progenitors have become one of the most intriguing possibilities for treating illnesses ranging from cartilage abnormalities to heart issues. Their immunomodulatory properties have also allowed for allogenic usage, besides expanding their potential for cardiomyocyte applications. In the present review, we highlighted mesenchymal stem cells (MSCs) in cardiovascular mechanotransduction, differentiation of cardiomyocytes and the use of MSCs in cardiovascular disease and tissue engineering.

2.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35562971

RESUMEN

Mechanotransduction is the process by which physical force is converted into a biochemical signal that is used in development and physiology; meanwhile, it is intended for the ability of cells to sense and respond to mechanical forces by activating intracellular signals transduction pathways and the relative phenotypic adaptation. It encompasses the role of mechanical stimuli for developmental, morphological characteristics, and biological processes in different organs; the response of cells to mechanically induced force is now also emerging as a major determinant of disease. Due to fluid shear stress caused by blood flowing tangentially across the lumen surface, cells of the cardiovascular system are typically exposed to a variety of mechanotransduction. In the body, tissues are continuously exposed to physical forces ranging from compression to strain, which is caused by fluid pressure and compressive forces. Only lately, though, has the importance of how forces shape stem cell differentiation into lineage-committed cells and how mechanical forces can cause or exacerbate disease besides organizing cells into tissues been acknowledged. Mesenchymal stem cells (MSCs) are potent mediators of cardiac repair which can secret a large array of soluble factors that have been shown to play a huge role in tissue repair. Differentiation of MSCs is required to regulate mechanical factors such as fluid shear stress, mechanical strain, and the rigidity of the extracellular matrix through various signaling pathways for their use in regenerative medicine. In the present review, we highlighted mechanical influences on the differentiation of MSCs and the general factors involved in MSCs differentiation. The purpose of this study is to demonstrate the progress that has been achieved in understanding how MSCs perceive and react to their mechanical environment, as well as to highlight areas where more research has been performed in previous studies to fill in the gaps.


Asunto(s)
Sistema Cardiovascular , Células Madre Mesenquimatosas , Diferenciación Celular , Mecanotransducción Celular , Estrés Mecánico
3.
Front Bioeng Biotechnol ; 10: 789644, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35557868

RESUMEN

Regenerative medicine is a field in medicine that relates to the ability to correct congenital anomalies and to repair or replace tissues and organs that have been destroyed by age, disease, or trauma. To date, promising preclinical and clinical data supported the possibility of using regenerative medicine to treat both chronic diseases and acute insults, as well as maladies affecting a wide range of organ systems and contexts, such as dermal wounds, cardiovascular diseases and traumas, cancer treatments, and more. One of the regenerative medicine therapies that have been used widely is stem cells. Stem cells, especially mesenchymal and hematopoietic stem cells, play an important role in treating chronic diseases, such as leukemia, bone marrow, autoimmune disease, and urinary problems. Despite considerable advancements in stem cell biology, their applications are limited by ethical concerns about embryonic stem cells, tumor development, and rejection. Nevertheless, many of these constraints, are being overcome, which could lead to significant advancements in disease management. This review discusses the current developments and advancements of regenerative medicine therapy (RMT) advancements in Malaysia compared to other Asian countries. The limitations in the application of RMT are also highlighted.

4.
Biomedicines ; 10(4)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35453554

RESUMEN

The chimeric antigen receptor (CAR) plays a dynamic role in targeting tumour-associated antigens in cancer cells. This novel therapeutic discovery combines fragments of monoclonal antibodies with the signalling and co-stimulatory domains that have been modified to its current fourth generation. CAR has been widely implemented in T-cells and natural killer (NK) cells immunotherapy. The significant advancement in CAR technology is evident based on numerous ongoing clinical trials on CAR-T/-NK cells and successful CAR-related products such as Kymriah (Novartis) and Yescarta (Kite Pharma, Gilead). Another important cell-based therapy is the engineering of mesenchymal stem cells (MSC). Researchers have been exploring MSCs and their innate homing abilities to tumour sites and secretion cytokines that bridge both CAR and MSC technologies as a therapeutic agent. This combination allows for both therapies to overcome each one's flaw as an immunotherapy intervention. Herein, we have provided a concise review on the background of CAR and its applications in different cancers, as well as MSCs' unique ability as delivery vectors for cancer therapy and the possibility of enhancing the CAR-immune cells' activity. Hence, we have highlighted throughout this review the synergistic effects of both interventions.

5.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830303

RESUMEN

The rapid mutation of the SARS-CoV-2 virus is now a major concern with no effective drugs and treatments. The severity of the disease is linked to the induction of a cytokine storm that promotes extensive inflammation in the lung, leading to many acute lung injuries, pulmonary edema, and eventually death. Mesenchymal stem cells (MSCs) might prove to be a treatment option as they have immunomodulation and regenerative properties. Clinical trials utilizing MSCs in treating acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) have provided a basis in treating post-COVID-19 patients. In this review, we discussed the effects of MSCs as an immunomodulator to reduce the severity and death in patients with COVID-19, including the usage of MSCs as an alternative regenerative therapy in post-COVID-19 patients. This review also includes the current clinical trials in utilizing MSCs and their potential future utilization for long-COVID treatments.


Asunto(s)
COVID-19/complicaciones , Inmunomodulación/fisiología , Trasplante de Células Madre Mesenquimatosas , Regeneración/fisiología , COVID-19/patología , COVID-19/terapia , COVID-19/virología , Humanos , Pulmón/patología , Pulmón/fisiología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2/aislamiento & purificación , Síndrome Post Agudo de COVID-19
6.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34576063

RESUMEN

Telomere repeat binding factor 2 (TRF2) has a well-known function at the telomeres, which acts to protect the telomere end from being recognized as a DNA break or from unwanted recombination. This protection mechanism prevents DNA instability from mutation and subsequent severe diseases caused by the changes in DNA, such as cancer. Since TRF2 actively inhibits the DNA damage response factors from recognizing the telomere end as a DNA break, many more studies have also shown its interactions outside of the telomeres. However, very little has been discovered on the mechanisms involved in these interactions. This review aims to discuss the known function of TRF2 and its interaction with the DNA damage response (DDR) factors at both telomeric and non-telomeric regions. In this review, we will summarize recent progress and findings on the interactions between TRF2 and DDR factors at telomeres and outside of telomeres.


Asunto(s)
Daño del ADN , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , Humanos , Procesamiento Proteico-Postraduccional
7.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918710

RESUMEN

Epithelial-Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.


Asunto(s)
Envejecimiento/genética , Transición Epitelial-Mesenquimal/genética , Acortamiento del Telómero , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Matriz Extracelular , Regulación de la Expresión Génica , Humanos , Transducción de Señal , Telómero/genética , Telómero/metabolismo
8.
Stem Cell Res Ther ; 10(1): 122, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999923

RESUMEN

BACKGROUND: Sox2 is a well-established pluripotent transcription factor that plays an essential role in establishing and maintaining pluripotent stem cells (PSCs). It is also thought to be a linage specifier that governs PSC neural lineage specification upon their exiting the pluripotent state. However, the exact role of SOX2 in human PSCs was still not fully understood. In this study, we studied the role of SOX2 in human embryonic stem cells (hESCs) by gain- and loss-of-function approaches and explored the possible underlying mechanisms. RESULTS: We demonstrate that knockdown of SOX2 induced hESC differentiation to endoderm-like cells, whereas overexpression of SOX2 in hESCs enhanced their pluripotency under self-renewing culture conditions but promoted their neural differentiation upon replacing the culture to non-self-renewal conditions. We show that this culture-dependent dual function of SOX2 was probably attributed to its interaction with different transcription factors predisposed by the culture environments. Whilst SOX2 interacts with OCT4 under self-renewal conditions, we found that, upon neural differentiation, PAX6, a key neural transcription factor, is upregulated and shows interaction with SOX2. The SOX2-PAX6 complex has different gene regulation pattern from that of SOX2-OCT4 complex. CONCLUSIONS: Our work provides direct evidence that SOX2 is necessarily required for hESC pluripotency; however, it can also function as a neural factor, depending on the environmental input. OCT4 and PAX6 might function as key SOX2-interacting partners that determine the function of SOX2 in hESCs.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción PAX6/metabolismo , Factores de Transcripción SOXB1/metabolismo , Línea Celular , Células Madre Embrionarias Humanas/citología , Humanos , Células-Madre Neurales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA