Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-30678078

RESUMEN

The paper presents results of water quality monitoring conducted within the frame of the MONSUL project. The main goal was to analyse and assess the impact of factors determining the ecological status of a dam reservoir on the basis of the Sulejow Reservoir located in Central Poland. The project implementation plan based on comprehensive research-based monitoring covered the following parameters characterising the ecological potential of the reservoir: water temperature, pH, oxygen concentration, chlorophyll "a" and blue-green algae, concentration of ammonium ion, nitrate nitrogen phosphates as well as total organic carbon, chemical oxygen demand and biochemical oxygen demand. The parameters were measured with a mobile and stationary monitoring system and supplemented by an off-line analysis of water samples in the laboratory. The study was carried out during two seasons: May­October 2015 and April­November 2016; the results were analysed also with regard to the weather conditions. Despite the similar temperatures of water and air in the analysed seasons, significant differences were observed for atmospheric precipitation; 2015 was a dry year, and the climatic water balance for the analysed area was negative, which caused limited surface runoff and decreased the concentrations of nutrient in the reservoir waters. Data from continuous monitoring, supplemented with the results of laboratory measurements, indicated that the values of TOC (Total Organic Carbon) and COD (Chemical Oxygen Demand) parameters were within the purity class I; exceedances refer to the BOD (Biochemical Oxygen Demand) value, which confirmed the presence of biodegradable organic compounds in the reservoir waters. The values of chlorophyll "a" and the presence of algae during the vegetation season testify to eutrophication of the Sulejow Reservoir.


Asunto(s)
Monitoreo del Ambiente/métodos , Agua Dulce/química , Sistemas en Línea , Análisis de la Demanda Biológica de Oxígeno , Eutrofización , Polonia , Lluvia , Estaciones del Año
2.
Chemosphere ; 176: 89-96, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28260659

RESUMEN

The article presents the results of studies on the oxidation mechanism of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt (R-salt) with oxygen in subcritical water. To this aim, a series of experiments were carried out which showed that at a temperature of 413 K and pH > 9 the oxidation reaction of a substrate with oxygen was relatively quick and after approximately 40 min the R-salt oxidation yield exceeded 95%. In an acidic medium (pH < 7), the rate of R-salt oxidation is small. In order to identify the mechanism of R-salt oxidation, experiments were carried out at 413-569 K in solutions with pH = 10.0 and at partial oxygen pressure pO2 = 1.73 MPa. As a result of these experiments, a stable oxidation product was isolated from the reaction mixture and subjected to spectroscopic analysis. The analysis of HNMR of this product proved that a stable intermediate product of R-salt oxidation was 4-sulfophthalic acid sodium salt. The results of the experiments have shown that destructive oxidation of R-salt can easily be obtained at a temperature of 413 K, but satisfactory reduction of TOC in wastewater containing this substrate requires the use of very high temperature: at 569 K only 60% reduction of TOC was achieved.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Naftalenosulfonatos/química , Oxígeno/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Calor , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Oxidación-Reducción , Sales (Química) , Aguas Residuales/química , Agua/química , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 46(17): 5747-5755, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22951329

RESUMEN

Thermal hydrolysis of excess activated sludge suspensions was carried at temperatures ranging from 423 K to 523 K and under pressure 0.2-4.0 MPa. Changes of total organic carbon (TOC) concentration in a solid and liquid phase were measured during these studies. At the temperature 423 K, after 2 h of the process, TOC concentration in the reaction mixture decreased by 15-18% of the initial value. At 473 K total organic carbon removal from activated sludge suspension increased to 30%. It was also found that the solubilisation of particulate organic matter strongly depended on the process temperature. At 423 K the transfer of TOC from solid particles into liquid phase after 1 h of the process reached 25% of the initial value, however, at the temperature of 523 K the conversion degree of 'solid' TOC attained 50% just after 15 min of the process. In the article a lumped kinetic model of the process of activated sludge thermohydrolysis has been proposed. It was assumed that during heating of the activated sludge suspension to a temperature in the range of 423-523 K two parallel reactions occurred. One, connected with thermal destruction of activated sludge particles, caused solubilisation of organic carbon and an increase of dissolved organic carbon concentration in the liquid phase (hydrolysate). The parallel reaction led to a new kind of unsolvable solid phase, which was further decomposed into gaseous products (CO(2)). The collected experimental data were used to identify unknown parameters of the model, i.e. activation energies and pre-exponential factors of elementary reactions. The mathematical model of activated sludge thermohydrolysis appropriately describes the kinetics of reactions occurring in the studied system.


Asunto(s)
Carbono/química , Aguas del Alcantarillado/química , Cinética , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA