Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Antennas Wirel Propag Lett ; 21(10): 2075-2079, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36388763

RESUMEN

Magnetic resonance imaging (MRI) requires spatial uniformity of the radiofrequency (RF) field inside the subject for maximum signal-to-noise ratio (SNR) and image contrast. Bulky high permittivity dielectric pads (HPDPs) focus magnetic fields into the region of interest (ROI) and increase RF field uniformity when placed between the patient and RF coils in the MR scanner. Metamaterials could replace HPDPs and reduce system bulkiness, but those in the literature often require a complicated fabrication process and cannot conform to patient body shape. Proposed is a flexible metamaterial for brain imaging made with a scalable fabrication process using conductive paint and a plastic laminate substrate. The effects of single and double-sided placement of the metamaterial around a human head phantom were investigated in a 3 T scanner. When two metamaterial sheets were wrapped around a head phantom (double-sided placement), the total average signal in the resulting image increased by 10.14% compared to placing a single metamaterial sheet underneath the phantom (single-sided placement). The difference between the maximum and minimum signal intensity values decreased by 57% in six different ROIs with double-sided placement compared to single-sided placement.

2.
Sci Rep ; 11(1): 20737, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671069

RESUMEN

Reconfigurable reflective surfaces can alter the propagation environment to improve wireless communication and power transfer. Paramount to this operation-which has attracted much attention recently-is the assumption that the reflective surface has prior knowledge of the propagation environment, for example, the direction/location of the transmitter and the intended receiver(s). To address this need, we propose a reconfigurable reflective metasurface with integrated sensing capabilities. By modifying the tunable meta-atoms constituting the metasurface, we couple small portions of the incident wave to an array of sensing waveguides. As an illustrative example, we demonstrate the ability to use the sampled incident wave to detect its angle of arrival. In addition, we propose and numerically demonstrate the possibility to reduce the required sensors, i.e., the number of radio frequency (RF) chains needed to acquire the sensed signals, by leveraging the inherent metasurface's tunable multiplexing capability. A reconfigurable reflective metasurface with integrated sensing capabilities can benefit wireless communications, wireless power transfer, RF sensing, and smart sensors.

3.
J Opt Soc Am A Opt Image Sci Vis ; 38(5): 727-736, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33983278

RESUMEN

Holography is a long-established technique to encode an object's spatial information into a lower-dimensional representation. We investigate the role of the illumination's spatial coherence properties in the success of such an imaging system through point spread function and Fourier domain analysis. Incoherent illumination is shown to result in more robust imaging performance free of diffraction artifacts at the cost of incurring background noise and sacrificing phase retrieval. Numerical studies confirm that this background noise reduces image sensitivity as the image size increases, in agreement with other similar systems. Following this analysis, we demonstrate a 2D holographic imaging system realized with lensless, 1D measurements of microwave fields generated by dynamic metasurface apertures.

4.
Sci Rep ; 11(1): 4693, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633119

RESUMEN

Mobile devices, climate science, and autonomous vehicles all require advanced microwave antennas for imaging, radar, and wireless communications. We propose a waveguide-fed metasurface antenna architecture that enables electronic beamsteering from a lightweight circuit board with varactor-tuned elements. Our approach uses a unique feed structure and layout that enables spatial sampling at the Nyquist limit of half a wavelength. We detail the design of this Nyquist metasurface antenna and experimentally demonstrate electronic beamsteering in two directions. Nyquist metasurface antennas can realize high performance without costly and power hungry phase shifters, making them a compelling technology for future antenna hardware.

5.
Opt Express ; 28(16): 23991-24004, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752386

RESUMEN

Metasurface antennas offer an alternative architecture to electrically large beamsteering arrays often used in radar and communications. The advantages offered by metasurfaces are enabled by the use of passive, tunable radiating elements. While these metamaterial elements do not exhibit the full range of phase tuning as can be obtained with phase shifters, they can be engineered to provide a similar level of performance with much lower power requirements and circuit complexity. Due to the limited phase and magnitude control, however, larger metasurface apertures can be susceptible to strong grating lobes which result from an unwanted periodic magnitude response that accompanies an ideal phase pattern. In this work, we combine antenna theory with analytical modeling of metamaterial elements to mathematically reveal the source of such grating lobes. To circumvent this problem, we introduce a compensatory waveguide feed layer designed to suppress grating lobes in metasurface antenna arrays. The waveguide feed layer helps metasurface antennas approach the performance of phased arrays from an improved hardware platform, poising metasurface antennas to impact a variety of beamforming applications.

6.
Adv Sci (Weinh) ; 7(3): 1901913, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32042558

RESUMEN

The rapid proliferation of intelligent systems (e.g., fully autonomous vehicles) in today's society relies on sensors with low latency and computational effort. Yet current sensing systems ignore most available a priori knowledge, notably in the design of the hardware level, such that they fail to extract as much task-relevant information per measurement as possible. Here, a "learned integrated sensing pipeline" (LISP), including in an end-to-end fashion both physical and processing layers, is shown to enable joint learning of optimal measurement strategies and a matching processing algorithm, making use of a priori knowledge on task, scene, and measurement constraints. Numerical results demonstrate accuracy improvements around 15% for object recognition tasks with limited numbers of measurements, using dynamic metasurface apertures capable of transceiving programmable microwave patterns. Moreover, it is concluded that the optimal learned microwave patterns are nonintuitive, underlining the importance of the LISP paradigm in current sensorization trends.

7.
Phys Rev Lett ; 121(6): 063901, 2018 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-30141669

RESUMEN

Complicated multipath trajectories of waves in disordered cavities cause object localization to be very challenging with traditional ray-tracing approaches. Yet it is known that information about the object position is encoded in the Green's function. After a calibration step, traditional time-reversal approaches retrieve a source's location from a broadband impulse response measurement. Here, we show that a nonemitting object's scattering contribution to a reverberant medium suffices to localize the object. We demonstrate our finding in the microwave domain. Then, we further simplify the scheme by replacing the temporal degrees of freedom (d.o.f.) of the broadband measurement with spatial d.o.f. obtained from wave front shaping. A simple electronically reconfigurable reflectarray inside the cavity dynamically modulates parts of the cavity boundaries, thereby providing spatial d.o.f. The demonstrated ability to localize multiple noncooperative objects with a single-frequency scheme may have important applications for sensors in smart homes.

8.
Appl Opt ; 57(15): 4123-4134, 2018 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-29791386

RESUMEN

Through aperture synthesis, an electrically small antenna can be used to form a high-resolution imaging system capable of reconstructing three-dimensional (3D) scenes. However, the large spectral bandwidth typically required in synthetic aperture radar systems to resolve objects in range often requires costly and complex RF components. We present here an alternative approach based on a hybrid imaging system that combines a dynamically reconfigurable aperture with synthetic aperture techniques, demonstrating the capability to resolve objects in three dimensions (3D), with measurements taken at a single frequency. At the core of our imaging system are two metasurface apertures, both of which consist of a linear array of metamaterial irises that couple to a common waveguide feed. Each metamaterial iris has integrated within it a diode that can be biased so as to switch the element on (radiating) or off (non-radiating), such that the metasurface antenna can produce distinct radiation profiles corresponding to different on/off patterns of the metamaterial element array. The electrically large size of the metasurface apertures enables resolution in range and one cross-range dimension, while aperture synthesis provides resolution in the other cross-range dimension. The demonstrated imaging capabilities of this system represent a step forward in the development of low-cost, high-performance 3D microwave imaging systems.

9.
Appl Opt ; 57(9): 2142-2149, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29604010

RESUMEN

We demonstrate a dynamic metasurface aperture as a unique tool for computational ghost imaging at microwave frequencies. The aperture consists of a microstrip waveguide loaded with an array of metamaterial elements, each of which couples energy from the waveguide mode to the radiation field. With a tuning mechanism introduced into each independently addressable metamaterial element, the aperture can produce diverse radiation patterns that vary as a function of tuning state. Here, we show that fields from such an aperture approximately obey speckle statistics in the radiative near field. Inspired by the analogy with optical correlation imaging, we use the dynamic aperture as a means of illuminating a scene with structured microwave radiation, receiving the backscattered intensity with a simple waveguide probe. By correlating the magnitude of the received signal with the structured intensity patterns, we demonstrate high-fidelity, phaseless imaging of sparse targets. The dynamic metasurface aperture as a novel ghost imaging structure can find application in security screening, through-wall imaging, as well as biomedical diagnostics.

10.
J Opt Soc Am A Opt Image Sci Vis ; 34(5): A22-A36, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28463331

RESUMEN

We investigate the application of dynamic metasurface antennas (DMAs) to synthetic aperture radar (SAR) systems. Metasurface antennas can generate a multitude of tailored electromagnetic waveforms from a physical platform that is low-cost, lightweight, and planar; these characteristics are not readily available with traditional SAR technologies, such as phased arrays and mechanically steered systems. We show that electronically tuned DMAs can generate steerable, directive beams for traditional stripmap and spotlight SAR imaging modes. This capability eliminates the need for mechanical gimbals and phase shifters, simplifying the hardware architecture of a SAR system. Additionally, we discuss alternative imaging modalities, including enhanced resolution stripmap and diverse pattern stripmap, which can achieve resolution on par with spotlight, while maintaining a large region-of-interest, as possible with stripmap. Further consideration is given to strategies for integrating metasurfaces with chirped pulse RF sources. DMAs are poised to propel SAR systems forward by offering a vast range of capabilities from a significantly improved physical platform.

11.
Opt Express ; 24(25): 28686-28692, 2016 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-27958512

RESUMEN

We present a metamaterial element designed as an efficient radiator for waveguide-fed metasurface antennas. The metamaterial element is an electrically-small, complimentary electric-LC (cELC) resonator designed to exhibit large radiated power while maintaining low ohmic losses. The shape of the element is tapered to simultaneously achieve broadband operation and suppression of cross polarization radiation. Full-wave numerical studies at the K-band are conducted to examine its performance when etched into a microstrip line. In this configuration, the element shows a radiation efficiency of 90.2% and a fractional bandwidth of 8.7%. To investigate the potential benefits of the proposed element in two-dimensional platforms, the radiative characteristics of the element are calculated when the element is embedded in a dielectric-filled parallel-plate waveguide. This efficient metamaterial element has potential application as a building block for metasurface devices used in imaging, sensing, wireless power transfer, and wireless communication systems.

12.
Appl Opt ; 54(31): 9343-53, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26560591

RESUMEN

Recently, a frequency-diverse, metamaterial-based aperture has been introduced in the context of microwave and millimeter wave imaging. The generic form of the aperture is that of a parallel plate waveguide, in which complementary metamaterial elements patterned into the upper plate couple energy from the waveguide mode to the scene. To reliably predict the imaging performance of such an aperture prior to fabrication and experiments, it is necessary to have an accurate forward model that predicts radiation from the aperture, a model for scattering from an arbitrary target in the scene, and a set of image reconstruction approaches that allow scene estimation from an arbitrary set of measurements. Here, we introduce a forward model in which the metamaterial elements are approximated as polarizable magnetic dipoles, excited by the fields propagating within the waveguide. The dipoles used in the model can have arbitrarily assigned polarizability characteristics. Alternatively, fields measured from actual metamaterial samples can be decomposed into a set of effective dipole radiators, allowing the performance of actual samples to be quantitatively modeled and compared with simulated apertures. To confirm the validity of our model, we simulate measurements and scene reconstructions with a virtual multiaperture imaging system operating in the K-band spectrum (18-26.5 GHz) and compare its performance with an experimental system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA