Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Acta Endocrinol (Buchar) ; 14(3): 315-319, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31149277

RESUMEN

CONTEXT: Foetal asphyxia, a frequent birth complication, detrimentally impacts the immature brain, resulting in neuronal damage, uncontrolled seizure activity and long-term neurological deficits. Oxytocin, a neurohormone mediating important materno-foetal interactions and parturition, has been previously suggested to modulate the immature brain's excitability, playing a neuroprotective role. Our aim was to investigate the effects of exogenous oxytocin administration on seizure burden and acute brain injury in a perinatal model of asphyxia in rats. ANIMALS AND METHODS: Asphyxia was modelled by exposing immature rats to a 90-minute episode of low oxygen (9% O2) and high CO2 (20% CO2). Control rats were kept in ambient room-air for the same time interval. In a third group of experiments, oxytocin (0.02 UI/g body weight) was nasally administered 30 minutes before the asphyxia episode. Seizure burden was assessed by the cumulative number of loss of righting reflex (LRR) over a two-hour postexposure period. Acute brain injury was assessed through hippocampal S-100 beta, a biomarker of cellular injury, 24-hours after exposure. RESULTS: Asphyxia increased both LRR and hippocampal S-100 beta protein compared to controls, and these effects were significantly reduced by oxytocin administration. CONCLUSION: Oxytocin treatment decreased both seizure burden and hippocampal injury, supporting a potential neuroprotective role for oxytocin in perinatal asphyxia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA