Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicol Rep ; 12: 23-40, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38193024

RESUMEN

Organophosphate poisoning remains a global health crisis without efficacious treatments to prevent neurotoxicity. We examined whether antidotal tiger nut and coconut dietary intervention could ameliorate neurobehavioral deficits from organophosphate dichlorvos-induced gut-brain axis dysregulation in a mouse model. Mice were divided into groups given control diet, dichlorvos-contaminated diets, or dichlorvos plus nut-enriched diets. They were exposed to a DDVP-contaminated diet for 4 weeks before exposure to the treatment diets for another 8 weeks. This was followed by behavioural assessments for cognitive, motor, anxiety-, and depressive-like behaviours. Faecal samples (pre- and post-treatment), as well as blood, brain, and gut tissues, were collected for biochemical assessments following euthanasia. Dichlorvos-exposed mice displayed impairments in cognition, motor function, and mood along with disrupted inflammatory and antioxidant responses, neurotrophic factor levels, and acetylcholinesterase activity in brain and intestinal tissues. Weight loss and altered short-chain fatty acid levels additionally indicated gut dysfunction. However, intervention with tiger nut and/or coconut- enriched diet after dichlorvos exposure attenuated these neurobehavioral, and biochemical alterations. Our findings demonstrate organophosphate-induced communication disruptions between the gut and brain pathways that manifest in neuropsychiatric disturbances. Overall, incorporating fibre-rich nuts may represent an antidotal dietary strategy to reduce neurotoxicity and prevent brain disorders associated with organophosphate poisoning.

2.
Psychoneuroendocrinology ; 158: 106370, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37678086

RESUMEN

Ketamine is an anaesthetic known to have short but rapid-acting anti-depressant effects; however, the neurobehavioural effects of its prolonged use and its role on the oxytocin system in the gut-brain axis are largely undetermined. Female BALB/c mice were either exposed to the chronic unpredictable mild stress (CUMS) paradigm for 21 days and then treated with ketamine in four doses for 14 days or exposed to CUMS and treated simultaneously in four doses of ketamine during the last two weeks of CUMS exposure. After each dose, the forced swim test was conducted to assess depressive-like behaviour. Before sacrifice, all the mice were subjected to behavioural tests to assess anxiety, memory, and social interaction. Prolonged treatment of depression with ketamine did not rescue depressive-like behaviour. It did, however, improve depression-associated anxiety-like behaviours, short-term memory and social interaction deficits when compared to the stressed untreated mice. Furthermore, ketamine treatment enhanced plasma oxytocin levels, expression of oxytocin receptors; as well as abrogated nitro-oxidative stress biomarkers in the intestinal and hippocampal tissues. Taken together, our findings indicate that while short-term use of ketamine has anti-depressant benefits, its prolonged therapeutic use does not seem to adequately resolve depressive-like behaviour in mice.


Asunto(s)
Ketamina , Ratones , Femenino , Animales , Ketamina/farmacología , Ketamina/metabolismo , Receptores de Oxitocina/metabolismo , Eje Cerebro-Intestino , Oxitocina/farmacología , Oxitocina/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Estrés Oxidativo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad
3.
Neurotox Res ; 40(6): 2001-2015, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36434357

RESUMEN

Using the Unpredictable Chronic Sleep Deprivation (UCSD) paradigm we developed, the combined effects of chronic sleep deprivation and high caffeine intake on prefrontal cortical synaptophysin expression, neurochemical profiles, and behavioural outcomes in Long-Evans rats were evaluated. The combination of chronic sleep deprivation and high-dose caffeine treatment produced varying degrees of behavioural impairments, depletion of antioxidants, serotonin, and an upregulation of acetylcholinesterase (AChE) activity in the prefrontal cortex. An immunohistochemical assessment revealed a reduction in synaptophysin protein expression in the prefrontal cortex following exposure to high-dose caffeine and chronic sleep deprivation. Overall, our findings support the advocacy for adequate sleep for optimal mental performance as a high intake of caffeine to attenuate the effects of sleep deprivation that may alter the neurochemical profile and synaptic plasticity in the prefrontal cortex, significantly increasing the risk of neuropsychiatric/degenerative disorders.


Asunto(s)
Cafeína , Privación de Sueño , Ratas , Animales , Cafeína/farmacología , Privación de Sueño/tratamiento farmacológico , Ratas Long-Evans , Sinaptofisina , Acetilcolinesterasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA