Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 128(36): 8835-8845, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39188212

RESUMEN

Highly scattering samples, such as polymer droplets or solid-state powders, are difficult to study via coherent two-dimensional infrared (2D IR) spectroscopy. Previously, researchers have employed (quasi-) phase cycling, local-oscillator chopping, and polarization control to reduce scattering, but the latter method poses a limit on polarization-dependent measurements. Here, we present a method for Scattering Elimination Immune from Detector Artifacts (SEIFDA) in pump-probe 2D IR experiments. Our method extends the negative probe delay method of removing scattering from pump-probe spectroscopy to 2D experiments. SEIFDA works well for all polarizations when combined with the optimized noise reduction scheme to remove additive and multiplicative noise. We demonstrate that our method can be employed with any polarization scheme and reliably lowers the scattering at parallel polarization to comparable levels to the conventional 8-frame phase cycling with probe chopping (8FPCPC) at perpendicular polarization. Our system can acquire artifact free spectra in parallel polarization when the signal intensity is as little as 5% of the intensity of the interference between the pump pulses scattered into the detector. It reduces the time required to characterize the scattering term by at least 50% over 8FPCPC. Through detailed analysis of detector nonlinearity, we show that the performance of 8FPCPC can be improved by incorporating nonlinear correction factors, but it is still worse than that of SEIFDA. Application of SEIFDA to study the encapsulation of Nile red in polymer droplets demonstrates that this method will be very useful for probing highly scattering systems.

2.
Nanoscale ; 16(35): 16706-16717, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39171763

RESUMEN

Liquid-liquid phase separation (LLPS) is a ubiquitous demixing phenomenon observed in various molecular solutions, including in polymer and protein solutions. Demixing of solutions results in condensed, phase separated droplets which exhibit a range of liquid-like properties driven by transient intermolecular interactions. Understanding the organization within these condensates is crucial for deciphering their material properties and functions. This study explores the distinct nanoscale networks and interfaces in the condensate samples using a modified cryo-electron microscopy (cryo-EM) method. The method involves initiating condensate formation on electron microscopy grids to limit droplet growth as large droplet sizes are not ideal for cryo-EM imaging. The versatility of this method is demonstrated by imaging three different classes of condensates. We further investigate the condensate structures using cryo-electron tomography which provides 3D reconstructions, uncovering porous internal structures, unique core-shell morphologies, and inhomogeneities within the nanoscale organization of protein condensates. Comparison with dry-state transmission electron microscopy emphasizes the importance of preserving the hydrated structure of condensates for accurate structural analysis. We correlate the internal structure of protein condensates with their amino acid sequences and material properties by performing viscosity measurements that support that more viscous condensates exhibit denser internal assemblies. Our findings contribute to a comprehensive understanding of nanoscale condensate structure and its material properties. Our approach here provides a versatile tool for exploring various phase-separated systems and their nanoscale structures for future studies.


Asunto(s)
Microscopía por Crioelectrón , Polímeros , Polímeros/química , Proteínas/química , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA