Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomater Sci Polym Ed ; 17(1-2): 121-37, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16411603

RESUMEN

Melt processing of poly(L-lactide) (PLLA) and poly(methyl methacrylate) (PMMA) was conducted over a targeted range of compositions with PLLAs of 118 and 316 kDa in molecular mass to identify morphologies and the phase relationships in these blends. These blends are of interest for use in biomaterials and the morphologies are critical for tissue-engineering studies where biodegradability, pore connectivity and surface texture control tissue viability and adhesion. Simple extrusion of the two polymers produced multiphase blends with an average domain size near 25 microm. Scanning electron microscopy and dynamic mechanical analysis demonstrated that these blends are immiscible, at least in a metastable sense, and regions of co-continuous structures were identified. Such co-continuous, which occurred generally in accordance with rheology prediction models, exhibit a fine interconnected structure that appears effective for fabricating certain biomaterials. A broad and unexpected transition appears in these blends, as measured by modulated differential scanning calorimetry between 70 and 100 degrees C, which may be the glass transition temperature of an alloy phase. The magnitude of this transition is greatest in the fine-structured co-continuous composition region of blends, suggesting the presence of a complex or other derivative of the two primary phases.


Asunto(s)
Poliésteres/química , Polimetil Metacrilato/química , Animales , Rastreo Diferencial de Calorimetría , Adhesión Celular , Línea Celular , Proliferación Celular , Cristalización , Ratones , Microscopía Electrónica de Rastreo , Peso Molecular , Transición de Fase , Temperatura , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA