Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem Toxicol ; 168: 113328, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35940331

RESUMEN

7-Methyl-2H-1,5-benzodioxepin-3(4H)-one (Calone®) is used in fragrances to impart a marine note. It is produced industrially at volumes requiring repeated dose and developmental/reproductive toxicology data (OECD TG 422) under European chemicals legislation (i.e., REACH). Additionally, Japanese chemicals legislation requires evaluation of Calone® biodegradability and identification of metabolites in an environmental biodegradation test. 7-Methyl-2H-1,5-benzodioxepin-3-ol (Calol) was the sole metabolite identified following biodegradation and a 28-day repeated dose toxicity study (OECD TG 407) would normally be required to support registration in Japan. The current paper presents results showing no adverse effects in the parental, reproductive, or developmental phases of an OECD TG 422 study following dietary administration of Calone® to rats at targeted doses of up to 1000 mg/kg/day. The No Observed Adverse Effect Level (NOAEL) was the highest administered dose of 791 and 922 mg/kg/day for males and females, respectively. An in vitro metabolism study conducted with rat and human liver microsomes demonstrated that greater than 90% of Calone® was metabolically reduced into Calol, the same metabolite observed in the environmental biodegradation test. Accordingly, the results from the OECD TG 422 study with Calone® are directly applicable to Calol and it would be expected to have the same NOAEL.


Asunto(s)
Benzoxepinas , Perfumes , Animales , Biodegradación Ambiental , Femenino , Humanos , Masculino , Nivel sin Efectos Adversos Observados , Ratas
2.
Toxicol Rep ; 4: 507-520, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28959681

RESUMEN

A toxicological evaluation of N-(1-((4-amino-2,2-dioxido-1H-benzo[c][1,2,6]thiadiazin-5-yl)oxy)-2-methylpropan-2-yl)-2,6-dimethylisonicotinamide (S2218; CAS 1622458-34-7), a flavour with modifying properties, was completed for the purpose of assessing its safety for use in food and beverage applications. S2218 exhibited minimal oxidative metabolism in vitro, and in rat pharmacokinetic studies, the compound was poorly orally bioavailable and rapidly eliminated. S2218 was not found to be mutagenic in an in vitro bacterial reverse mutation assay, and was found to be neither clastogenic nor aneugenic in an in vitro mammalian cell micronucleus assay. In subchronic oral toxicity studies in male and female rats, the NOAEL was 140 mg/kg bw/day (highest dose tested) for S2218 sulfate salt (S8069) when administered as a food ad-mix for 13 consecutive weeks. Furthermore, S2218 sulfate salt demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg bw/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

3.
Toxicol Rep ; 3: 310-327, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28959552

RESUMEN

A toxicological evaluation of two novel bitter modifying flavour compounds, 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)imidazolidine-2,4-dione (S6821, CAS 1119831-25-2) and 3-(1-((3,5-dimethylisoxazol-4-yl)methyl)-1H-pyrazol-4-yl)-1-(3-hydroxybenzyl)-5,5-dimethylimidazolidine-2,4-dione (S7958, CAS 1217341-48-4), were completed for the purpose of assessing their safety for use in food and beverage applications. S6821 undergoes oxidative metabolism in vitro, and in rat pharmacokinetic studies both S6821 and S7958 are rapidly converted to the corresponding O-sulfate and O-glucuronide conjugates. S6821 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in bone marrow polychromatic erythrocytes in vivo. S7958, a close structural analog of S6821, was also found to be non-mutagenic in vitro. In short term and subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for both S7958 and S6821 was 100 mg/kg bw/day (highest dose tested) when administered as a food ad-mix for either 28 or 90 consecutive days, respectively. Furthermore, S6821 demonstrated a lack of maternal toxicity, as well as adverse effects on fetal morphology at the highest dose tested, providing a NOAEL of 1000 mg/kg bw/day for both maternal toxicity and embryo/fetal development when administered orally during gestation to pregnant rats.

4.
Toxicol Rep ; 3: 501-512, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28959573

RESUMEN

A toxicological evaluation of a umami flavour compound, 2-(((3-(2,3-dimethoxyphenyl)-1H-1,2,4-triazol-5-yl)thio)methyl)pyridine (S3643; CAS 902136-79-2), was completed for the purpose of assessing its safety for use in food and beverage applications. S3643 undergoes extensive oxidative metabolism in vitro with rat microsomes producing the S3643-sulfoxide and 4'-hydroxy-S3643 as the major metabolites. In incubations with human microsomes, the O-demethyl-S3643 and S3643-sulfoxide were produced as the major metabolites. In pharmacokinetic studies in rats, the S3643-sulfoxide represents the dominant biotransformation product. S3643 was not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in CHO-WBL cells. In subchronic oral toxicity studies in rats, the no-observed-adverse-effect-level (NOAEL) for S3643 was 100 mg/kg bw/day (highest dose tested) when administered in the diet for 90 consecutive days.

5.
Toxicol Rep ; 3: 841-860, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28959612

RESUMEN

Toxicological evaluations of two N-alkyl benzamide umami flavour compounds, N-(heptan-4-yl)benzo[d][1,3]dioxole-5-carboxamide (S807, CAS 745047-51-2) and (R)-N-(1-methoxy-4-methylpentan-2-yl)-3,4-dimethylbenzamide (S9229, CAS 851669-60-8), were completed for the purpose of assessing their safety for use in food and beverage applications. Both S807 and S9229 undergo rapid oxidative metabolism by both rat and human liver microsomes in vitro. In pharmacokinetic studies in rats, the systemic exposure to S9229 on oral administration is very low at all doses (% F < 1%), while that of S807 demonstrated a non-linear dose dependence. In metabolism studies in rats, hydroxylation of the C-4 aryl methyl group was found to be the dominant metabolic pathway for S9229. The dominant metabolic pathway for S807 in the rat involved oxidative scission of the methylenedioxy moiety to produce the corresponding 3,4-dihydroxybenamide which is further converted by Phase II metabolic enzymes to the 3- and 4-O-methyl ethers as well as their corresponding glucuronides. Both S807 and S9229 were not found to be mutagenic or clastogenic in vitro, and did not induce micronuclei in polychromatic erythrocytes in vivo. In a subchronic oral toxicity study in rats, the no-observed-effect-level (NOEL) for S807 was 20 mg/kg bw/day when administered in the diet for 13 weeks. The no-observed-adverse-effect-level (NOAEL) for S9229 in rats was 100 mg/kg bw/day (highest dose tested) when administered in the diet for 28 consecutive days.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA