Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22865, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38129473

RESUMEN

We aimed to investigate the reliability and validity of sweat lactate threshold (sLT) measurement based on the real-time monitoring of the transition in sweat lactate levels (sLA) under hypoxic exercise. In this cross-sectional study, 20 healthy participants who underwent exercise tests using respiratory gas analysis under hypoxia (fraction of inspired oxygen [FiO2], 15.4 ± 0.8%) in addition to normoxia (FiO2, 20.9%) were included; we simultaneously monitored sLA transition using a wearable lactate sensor. The initial significant elevation in sLA over the baseline was defined as sLT. Under hypoxia, real-time dynamic changes in sLA were successfully visualized, including a rapid, continual rise until volitionary exhaustion and a progressive reduction in the recovery phase. High intra- and inter-evaluator reliability was demonstrated for sLT's repeat determinations (0.782 [0.607-0.898] and 0.933 [0.841-0.973]) as intraclass correlation coefficients [95% confidence interval]. sLT correlated with ventilatory threshold (VT) (r = 0.70, p < 0.01). A strong agreement was found in the Bland-Altman plot (mean difference/mean average time: - 15.5/550.8 s) under hypoxia. Our wearable device enabled continuous and real-time lactate assessment in sweat under hypoxic conditions in healthy participants with high reliability and validity, providing additional information to detect anaerobic thresholds in hypoxic conditions.


Asunto(s)
Umbral Anaerobio , Ácido Láctico , Humanos , Sudor , Reproducibilidad de los Resultados , Estudios Transversales , Hipoxia , Consumo de Oxígeno , Prueba de Esfuerzo
2.
Circ Res ; 133(10): 861-876, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37818671

RESUMEN

BACKGROUND: The membrane components of cardiomyocytes are rich in polyunsaturated fatty acids, which are easily oxidized. Thus, an efficient glutathione-based lipid redox system is essential for maintaining cellular functions. However, the relationship between disruption of the redox system during ischemia-reperfusion (IR), oxidized lipid production, and consequent cell death (ferroptosis) remains unclear. We investigated the mechanisms underlying the disruption of the glutathione-mediated reduction system related to ferroptosis during IR and developed intervention strategies to suppress ferroptosis. METHODS: In vivo fluctuations of both intra- and extracellular metabolite levels during IR were explored via microdialysis and tissue metabolome analysis. Oxidized phosphatidylcholines were assessed using liquid chromatography high-resolution mass spectrometry. The areas at risk following IR were assessed using triphenyl-tetrazolium chloride/Evans blue stain. RESULTS: Metabolomic analysis combined with microdialysis revealed a significant release of glutathione from the ischemic region into extracellular spaces during ischemia and after reperfusion. The release of glutathione into extracellular spaces and a concomitant decrease in intracellular glutathione concentrations were also observed during anoxia-reperfusion in an in vitro cardiomyocyte model. This extracellular glutathione release was prevented by chemical inhibition or genetic suppression of glutathione transporters, mainly MRP1 (multidrug resistance protein 1). Treatment with MRP1 inhibitor reduced the intracellular reactive oxygen species levels and lipid peroxidation, thereby inhibiting cell death. Subsequent in vivo evaluation of endogenously oxidized phospholipids following IR demonstrated the involvement of ferroptosis, as levels of multiple oxidized phosphatidylcholines were significantly elevated in the ischemic region 12 hours after reperfusion. Inhibition of the MRP1 transporter also alleviated intracellular glutathione depletion in vivo and significantly reduced the generation of oxidized phosphatidylcholines. Administration of MRP1 inhibitors significantly attenuated infarct size after IR injury. CONCLUSIONS: Glutathione was released continuously during IR, primarily in an MRP1-dependent manner, and induced ferroptosis. Suppression of glutathione release attenuated ferroptosis and reduced myocardial infarct size following IR.


Asunto(s)
Ferroptosis , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Reperfusión , Isquemia/metabolismo , Glutatión/metabolismo , Fosfolípidos/metabolismo , Fosfatidilcolinas
3.
Sci Rep ; 13(1): 10366, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365235

RESUMEN

A simple, non-invasive algorithm for maximal lactate steady state (MLSS) assessment has not been developed. We examined whether MLSS can be estimated from the sweat lactate threshold (sLT) using a novel sweat lactate sensor for healthy adults, with consideration of their exercise habits. Fifteen adults representing diverse fitness levels were recruited. Participants with/without exercise habits were defined as trained/untrained, respectively. Constant-load testing for 30 min at 110%, 115%, 120%, and 125% of sLT intensity was performed to determine MLSS. The tissue oxygenation index (TOI) of the thigh was also monitored. MLSS was not fully estimated from sLT, with 110%, 115%, 120%, and 125% of sLT in one, four, three, and seven participants, respectively. The MLSS based on sLT was higher in the trained group as compared to the untrained group. A total of 80% of trained participants had an MLSS of 120% or higher, while 75% of untrained participants had an MLSS of 115% or lower based on sLT. Furthermore, compared to untrained participants, trained participants continued constant-load exercise even if their TOI decreased below the resting baseline (P < 0.01). MLSS was successfully estimated using sLT, with 120% or more in trained participants and 115% or less in untrained participants. This suggests that trained individuals can continue exercising despite decreases in oxygen saturation in lower extremity skeletal muscles.


Asunto(s)
Umbral Anaerobio , Ácido Láctico , Adulto , Humanos , Umbral Anaerobio/fisiología , Prueba de Esfuerzo , Sudor , Ciclismo/fisiología , Consumo de Oxígeno
4.
Cardiol Res Pract ; 2023: 2236422, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37151871

RESUMEN

Definitive diagnosis of familial hypercholesterolemia (FH) is paramount for the risk management of patients and their relatives. The present study aimed to investigate the frequency of gene variants contributing to low-density lipoprotein cholesterol (LDL-C) metabolism and their clinical relevance in patients with early-onset coronary artery disease (EOCAD). Among 63 consecutive patients with EOCAD (men <55 years or women <65 years) who underwent percutaneous coronary intervention (PCI) from 2013 to 2019 at Keio University Hospital, 52 consented to participate in this retrospective study. Targeted sequencing of LDLR, PCSK9, APOB, and LDLRAP1 was performed. Of the 52 patients enrolled (42 men; mean age: 50 ± 6 years), one (LDLR, c.1221_1222delCGinsT) harbored a pathogenic mutation, and one (APOB, c.10591A>G) harbored variants of uncertain significance. Both the patients harboring the variants were male, showing no history of diabetes mellitus or chronic kidney disease, no family history of EOCAD, and no physical findings of FH (i.e., tendon xanthomas or Achilles tendon thickening). Patients harboring the LDLR variant had three-vessel disease, were on a statin prescription at baseline, and had stable LDL-C levels; however, the case showed a poor response to the intensification of medication after PCI. Approximately 3.8% of patients with EOCAD harbored variants of gene related to LDL-C metabolism; there were no notable indicators in the patients' background or clinical course to diagnose FH. Given the difficulty in diagnosing FH based on clinical manifestations and family history, genetic testing could enable the identification of hidden risk factors and provide early warnings to their relatives.

5.
J Am Heart Assoc ; 12(3): e8137, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36718876

RESUMEN

Background Balloon pulmonary angioplasty (BPA) improves exercise tolerance and hemodynamic parameters in patients with chronic thromboembolic pulmonary hypertension. However, it is still unclear which patient characteristics contribute to the improvement in exercise tolerance after BPA in chronic thromboembolic pulmonary hypertension. Methods and Results We retrospectively analyzed 126 patients with chronic thromboembolic pulmonary hypertension (aged 63±14 years; female, 65%) who underwent BPA without concomitant programmed exercise rehabilitation at Keio University between November 2012 and April 2018. Hemodynamic data and 6-minute walk distance (6MWD), as a measure of exercise tolerance, were evaluated before and 1 year after BPA. The clinical characteristics that contributed to improvement in exercise tolerance were elucidated. The 6MWD significantly increased from 372.0 m (256.5-431.3) to 462.0 m (378.8-537.0) 1 year after BPA (P<0.001). The improvement rate in the 6MWD after BPA exhibited a good correlation with age, height, mean pulmonary artery pressure, and 6MWD at baseline (Spearman rank correlation coefficients=-0.28, 0.24, -0.40, and 0.44, respectively). Additional multivariable linear regression analysis revealed that young age, tall height, high mean pulmonary artery pressure, short 6MWD at baseline, and high lung capacity at baseline were significant predictors of the improvement in 6MWD by BPA (standardized partial regression coefficient -0.39, 0.22, 0.19, -0.62, and 0.25, P<0.001, 0.007, 0.011, <0.001, and <0.001, respectively). Conclusions BPA without concomitant programmed exercise rehabilitation significantly improves exercise tolerance. This was particularly true in young patients with high stature, high mean pulmonary artery pressure, short 6MWD, and lung capacity at the time of diagnosis.


Asunto(s)
Angioplastia de Balón , Hipertensión Pulmonar , Embolia Pulmonar , Humanos , Femenino , Hipertensión Pulmonar/diagnóstico , Hipertensión Pulmonar/terapia , Arteria Pulmonar , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/terapia , Embolia Pulmonar/complicaciones , Tolerancia al Ejercicio , Estudios Retrospectivos , Resultado del Tratamiento , Angioplastia de Balón/efectos adversos , Angioplastia de Balón/métodos , Enfermedad Crónica
6.
Circulation ; 146(10): 755-769, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35916132

RESUMEN

BACKGROUND: Novel targeted treatments increase the need for prompt hypertrophic cardiomyopathy (HCM) detection. However, its low prevalence (0.5%) and resemblance to common diseases present challenges that may benefit from automated machine learning-based approaches. We aimed to develop machine learning models to detect HCM and to differentiate it from other cardiac conditions using ECGs and echocardiograms, with robust generalizability across multiple cohorts. METHODS: Single-institution HCM ECG models were trained and validated on external data. Multi-institution models for ECG and echocardiogram were trained on data from 3 academic medical centers in the United States and Japan using a federated learning approach, which enables training on distributed data without data sharing. Models were validated on held-out test sets for each institution and from a fourth academic medical center and were further evaluated for discrimination of HCM from aortic stenosis, hypertension, and cardiac amyloidosis. Last, automated detection was compared with manual interpretation by 3 cardiologists on a data set with a realistic HCM prevalence. RESULTS: We identified 74 376 ECGs for 56 129 patients and 8392 echocardiograms for 6825 patients at the 4 academic medical centers. Although ECG models trained on data from each institution displayed excellent discrimination of HCM on internal test data (C statistics, 0.88-0.93), the generalizability was limited, most notably for a model trained in Japan and tested in the United States (C statistic, 0.79-0.82). When trained in a federated manner, discrimination of HCM was excellent across all institutions (C statistics, 0.90-0.96 and 0.90-0.96 for ECG and echocardiogram model, respectively), including for phenotypic subgroups. The models further discriminated HCM from hypertension, aortic stenosis, and cardiac amyloidosis (C statistics, 0.84, 0.83, and 0.88, respectively, for ECG and 0.93, 0.94, 0.85, respectively, for echocardiogram). Analysis of electrocardiography-echocardiography paired data from 11 823 patients from an external institution indicated a higher sensitivity of automated HCM detection at a given positive predictive value compared with cardiologists (0.98 versus 0.81 at a positive predictive value of 0.01 for ECG and 0.78 versus 0.59 at a positive predictive value of 0.24 for echocardiogram). CONCLUSIONS: Federated learning improved the generalizability of models that use ECGs and echocardiograms to detect and differentiate HCM from other causes of hypertrophy compared with training within a single institution.


Asunto(s)
Amiloidosis , Cardiomiopatía Hipertrófica , Hipertensión , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/epidemiología , Ecocardiografía , Electrocardiografía , Humanos
7.
Metabolites ; 12(3)2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35323653

RESUMEN

Fatty acids (FAs) have structural and functional diversity. FAs in the heart are closely associated with cardiac function, and their qualitative or quantitative abnormalities lead to the onset and progression of cardiac disease. FAs are important as an energy substrate for the heart, but when in excess, they exhibit cardio-lipotoxicity that causes cardiac dysfunction or heart failure with preserved ejection fraction. FAs also play a role as part of phospholipids that compose cell membranes, and the changes in mitochondrial phospholipid cardiolipin and the FA composition of plasma membrane phospholipids affect cardiomyocyte survival. In addition, FA metabolites exert a wide variety of bioactivities in the heart as lipid mediators. Recent advances in measurement using mass spectrometry have identified trace amounts of n-3 polyunsaturated fatty acids (PUFAs)-derived bioactive metabolites associated with heart disease. n-3 PUFAs have a variety of cardioprotective effects and have been shown in clinical trials to be effective in cardiovascular diseases, including heart failure. This review outlines the contributions of FAs to cardiac function and pathogenesis of heart diseases from the perspective of three major roles and proposes therapeutic applications and new medical perspectives of FAs represented by n-3 PUFAs.

8.
JACC Basic Transl Sci ; 7(2): 146-161, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35257042

RESUMEN

Neutrophil extracellular traps (NETs) contribute to inflammatory pathogenesis in numerous conditions, including infectious and cardiovascular diseases, and have attracted attention as potential therapeutic targets. H2 acts as an antioxidant and has been clinically and experimentally proven to ameliorate inflammation. This study was performed to investigate whether H2 could inhibit NET formation and excessive neutrophil activation. Neutrophils isolated from the blood of healthy volunteers were stimulated with phorbol-12-myristate-13-acetate (PMA) or the calcium ionophore A23187 in H2-exposed or control media. Compared with control neutrophils, PMA- or A23187-stimulated human neutrophils exposed to H2 exhibited reduced neutrophil aggregation, citrullination of histones, membrane disruption by chromatin complexes, and release of NET components. CXCR4high neutrophils are highly prone to NETs, and H2 suppressed Ser-139 phosphorylation in H2AX, a marker of DNA damage, thereby suppressing the induction of CXCR4 expression. H2 suppressed both myeloperoxidase chlorination activity and production of reactive oxygen species to the same degree as N-acetylcysteine and ascorbic acid, while showing a more potent ability to inhibit NET formation than these antioxidants do in PMA-stimulated neutrophils. Although A23187 formed NETs in a reactive oxygen species-independent manner, H2 inhibited A23187-induced NET formation, probably via direct inhibition of peptidyl arginine deiminase 4-mediated histone citrullination. Inhalation of H2 inhibited the formation and release of NET components in the blood and bronchoalveolar lavage fluid in animal models of lipopolysaccharide-induced sepsis (mice and aged mini pigs). Thus, H2 therapy can be a novel therapeutic strategy for NETs associated with excessive neutrophil activation.

9.
PLoS One ; 16(11): e0257549, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34758032

RESUMEN

Particulate generation occurs during exercise-induced exhalation, and research on this topic is scarce. Moreover, infection-control measures are inadequately implemented to avoid particulate generation. A laminar airflow ventilation system (LFVS) was developed to remove respiratory droplets released during treadmill exercise. This study aimed to investigate the relationship between the number of aerosols during training on a treadmill and exercise intensity and to elucidate the effect of the LFVS on aerosol removal during anaerobic exercise. In this single-center observational study, the exercise tests were performed on a treadmill at Running Science Lab in Japan on 20 healthy subjects (age: 29±12 years, men: 80%). The subjects had a broad spectrum of aerobic capacities and fitness levels, including athletes, and had no comorbidities. All of them received no medication. The exercise intensity was increased by 1-km/h increments until the heart rate reached 85% of the expected maximum rate and then maintained for 10 min. The first 10 subjects were analyzed to examine whether exercise increased the concentration of airborne particulates in the exhaled air. For the remaining 10 subjects, the LFVS was activated during constant-load exercise to compare the number of respiratory droplets before and after LFVS use. During exercise, a steady amount of particulates before the lactate threshold (LT) was followed by a significant and gradual increase in respiratory droplets after the LT, particularly during anaerobic exercise. Furthermore, respiratory droplets ≥0.3 µm significantly decreased after using LFVS (2120800±759700 vs. 560 ± 170, p<0.001). The amount of respiratory droplets significantly increased after LT. The LFVS enabled a significant decrease in respiratory droplets during anaerobic exercise in healthy subjects. This study's findings will aid in exercising safely during this pandemic.


Asunto(s)
Aire Acondicionado/métodos , COVID-19/prevención & control , Ejercicio Físico/fisiología , Material Particulado/química , Adulto , Aerosoles/química , Filtros de Aire , Umbral Anaerobio/fisiología , COVID-19/metabolismo , Prueba de Esfuerzo/métodos , Espiración/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Humanos , Japón , Ácido Láctico/metabolismo , Masculino , Consumo de Oxígeno/fisiología , Respiración , Sistema Respiratorio/fisiopatología , Carrera/fisiología , SARS-CoV-2/patogenicidad , Ventilación/métodos
10.
Heliyon ; 7(11): e08359, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34816046

RESUMEN

Drinking hydrogen (H2)-rich water is a common way to consume H2. Although many studies have shown efficacy of drinking H2-rich water in neuropsychiatric and endocrine metabolic disorders, their authenticity has been questioned because none examined the associated pharmacokinetics of H2. Therefore, we performed the first study to investigate the pharmacokinetics of H2 in pigs given an H2-rich glucose solution with the aim to extrapolate the findings to humans. We inserted blood collection catheters into the jejunal and portal veins, suprahepatic inferior vena cava, and carotid artery of 4 female pigs aged 8 weeks. Then, within 2 min we infused 500 ml of either H2-rich or H2-free glucose solution into the jejunum via a percutaneous gastrostomy tube and measured changes in H2 concentration in venous and arterial blood over 120 min. After infusion of the H2-rich glucose solution, H2 concentration in the portal vein peaked at 0.05 mg/L and remained at more than 0.016 mg/L (H2 saturation level, 1%) after 1 h; it also increased after infusion of H2-free glucose solution but remained below 0.001 mg/L (H2 saturation level, 0.06%). We assume that H2 was subsequently metabolized in the liver or eliminated via the lungs because it was not detected in the carotid artery. In conclusion, drinking highly concentrated H2-rich solution within a short time is a good way to increase H2 concentration in portal blood and supply H2 to the liver.

11.
J Mol Cell Cardiol ; 161: 116-129, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34390730

RESUMEN

MITOL/MARCH5 is an E3 ubiquitin ligase that plays a crucial role in the control of mitochondrial quality and function. However, the significance of MITOL in cardiomyocytes under physiological and pathological conditions remains unclear. First, to determine the significance of MITOL in unstressed hearts, we assessed the cellular changes with the reduction of MITOL expression by siRNA in neonatal rat primary ventricular cardiomyocytes (NRVMs). MITOL knockdown in NRVMs induced cell death via ferroptosis, a newly defined non-apoptotic programmed cell death, even under no stress conditions. This phenomenon was observed only in NRVMs, not in other cell types. MITOL knockdown markedly reduced mitochondria-localized GPX4, a key enzyme associated with ferroptosis, promoting accumulation of lipid peroxides in mitochondria. In contrast, the activation of GPX4 in MITOL knockdown cells suppressed lipid peroxidation and cell death. MITOL knockdown reduced the glutathione/oxidized glutathione (GSH/GSSG) ratio that regulated GPX4 expression. Indeed, the administration of GSH or N-acetylcysteine improved the expression of GPX4 and viability in MITOL-knockdown NRVMs. MITOL-knockdown increased the expression of the glutathione-degrading enzyme, ChaC glutathione-specific γ-glutamylcyclotransferase 1 (Chac1). The knockdown of Chac1 restored the GSH/GSSG ratio, GPX4 expression, and viability in MITOL-knockdown NRVMs. Further, in cultured cardiomyocytes stressed with DOX, both MITOL and GPX4 were reduced, whereas forced-expression of MITOL suppressed DOX-induced ferroptosis by maintaining GPX4 content. Additionally, MITOL knockdown worsened vulnerability to DOX, which was almost completely rescued by treatment with ferrostatin-1, a ferroptosis inhibitor. In vivo, cardiac-specific depletion of MITOL did not produce obvious abnormality, but enhanced susceptibility to DOX toxicity. Finally, administration of ferrostatin-1 suppressed exacerbation of DOX-induced myocardial damage in MITOL-knockout hearts. The present study demonstrates that MITOL determines the cell fate of cardiomyocytes via the ferroptosis process and plays a key role in regulating vulnerability to DOX treatment. (288/300).


Asunto(s)
Cardiomiopatías/inducido químicamente , Doxorrubicina/farmacología , Glutatión/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Muerte Celular/efectos de los fármacos , Células Cultivadas , Doxorrubicina/efectos adversos , Ferroptosis/efectos de los fármacos , Células HEK293 , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/genética , Miocitos Cardíacos/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Ratas , Ubiquitina-Proteína Ligasas/genética , gamma-Glutamilciclotransferasa/genética , gamma-Glutamilciclotransferasa/metabolismo
12.
Eur Heart J Case Rep ; 5(3): ytab117, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33824940

RESUMEN

BACKGROUND: Severe pulmonary arterial hypertension (PAH) is generally treated with multiple PAH-specific vasodilators. If these agents are unsuccessful, additional treatment options are scarce, and the prognosis is poor due to right-sided heart failure. Some of these severe cases are also accompanied by endocrinological side effects. The most common side effect of prostacyclin is thyroid dysfunction, but in very few cases, adrenocorticotropic hormone (ACTH) deficiency may occur. CASE SUMMARY: A 35-year-old woman was diagnosed with hereditary PAH 2 years ago. Since her mean pulmonary arterial pressure was high, combination therapy of vasodilators, including prostacyclin, was introduced. Several months later, she was hospitalized with a persistent fever. Laboratory tests showed no findings suggestive of infection. However, hypereosinophilia and decreased secretion of ACTH and cortisol were noted, which led to the diagnosis of ACTH deficiency. A multimodal diagnostic approach, including pituitary magnetic resonance imaging and axillary lymph node biopsy, indicated that the aetiology of the ACTH deficiency was likely autoimmune hypophysitis. She was treated with hydrocortisone supplementation, which significantly relieved her condition. DISCUSSION: Endocrinological side effects in PAH patients using prostacyclin should be carefully addressed. If right-sided heart failure worsens during the administration of prostacyclin, it is essential to determine whether it is due to progression of pulmonary hypertension or endocrinological side effects. Careful diagnosis and treatment are important for managing the haemodynamics and symptoms of PAH patients given prostacyclin.

13.
Circ J ; 85(6): 929-938, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-33658455

RESUMEN

BACKGROUND: Timely differentiation of monocytes into M2-like macrophages is important in the cardiac healing process after myocardial infarction (MI), but molecular mechanisms governing M2-like macrophage differentiation at the transcriptional level after MI have not been fully understood.Methods and Results:A time-series microarray analysis of mRNAs and microRNAs in macrophages isolated from the infarcted myocardium was performed to identify the microRNAs involved in regulating the process of differentiation to M2-like macrophages. Correlation analysis revealed 7 microRNAs showing negative correlations with the progression of polarity changes towards M2-like subsets. Next, correlation coefficients for the changes in expression of mRNAs and miRNAs over time were calculated for all combinations. As a result, miR-27a-5p was extracted as a possible regulator of the largest number of genes in the pathway for the M2-like polarization. By selecting mouse mRNAs and human mRNAs possessing target sequences of miR-27a-5p and showing expression patterns inversely correlated with that of miR-27a-5p, 8 potential targets of miR-27a-5p were identified, includingPpm1l. Using the mouse bone marrow-derived macrophages undergoing differentiation into M2-like subsets by interleukin 4 stimulation, we confirmed that miR-27a-5p suppressed M2-related genes by negatively regulatingPpm1lexpression. CONCLUSIONS: Ppm1land miR-27a-5p may be the key molecules regulating M2-like polarization, with miR-27a-5p inhibiting the M2-like polarization through downregulation ofPpm1lexpression.


Asunto(s)
MicroARNs , Infarto del Miocardio , Animales , Perfilación de la Expresión Génica , Macrófagos , Ratones , MicroARNs/genética , Monocitos , Infarto del Miocardio/genética , ARN Mensajero
14.
J Clin Med Res ; 12(10): 674-680, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33029275

RESUMEN

BACKGROUND: Molecular hydrogen (H2) is a biologically active gas that is widely used in the healthcare sector. In recent years, on-site H2 gas generators, which produce high-purity H2 by water electrolysis, have begun to be introduced in hospitals, clinics, beauty salons, and fitness clubs because of their ease of use. In general, these generators produce H2 at a low-flow rate, so physicians are concerned that an effective blood concentration of H2 may not be ensured when the gas is delivered through a nasal cannula. Therefore, this study aimed to evaluate blood concentrations of H2 delivered from an H2 gas generator via a nasal cannula. METHODS: We administered 100% H2, produced by an H2 gas generator, at a low-flow rate of 250 mL/min via a nasal cannula to three spontaneously breathing micro miniature pigs. An oxygen mask was placed over the nasal cannula to administer oxygen while minimizing H2 leakage, and a catheter was inserted into the carotid artery to monitor the arterial blood H2 concentration. RESULTS: During the first hour of H2 inhalation, the mean (standard error (SE)) H2 concentrations and saturations in the arterial blood of the three pigs were 1,560 (413) nL/mL and 8.85% (2.34%); 1,190 (102) nL/mL and 6.74% (0.58%); and 1,740 (181) nL/mL and 9.88% (1.03%), respectively. These values are comparable to the concentration one would expect if 100% of the H2 released from the H2 gas generator is taken up by the body. CONCLUSIONS: Inhalation of 100% H2 produced by an H2 gas generator, even at low-flow rates, can increase blood H2 concentrations to levels that previous non-clinical and clinical studies demonstrated to be therapeutically effective. The combination of a nasal cannula and an oxygen mask is a convenient way to reduce H2 leakage while maintaining oxygenation.

15.
J Am Heart Assoc ; 9(18): e017071, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32865099

RESUMEN

Background We previously reported that osteopontin plays an essential role in accelerating both reparative fibrosis and clearance of dead cells (efferocytosis) during tissue repair after myocardial infarction (MI) and galectin-3hiCD206+ macrophages is the main source of osteopontin in post-MI heart. Interleukin-10- STAT3 (signal transducer and activator of transcription 3)-galectin-3 axis is essential for Spp1 (encoding osteopontin) transcriptional activation in cardiac macrophages after MI. Here, we investigated the more detailed mechanism responsible for functional maturation of osteopontin-producing macrophages. Methods and Results In post-MI hearts, Spp1 transcriptional activation occurred almost exclusively in MerTK (Mer tyrosine kinase)+ galectin-3hi macrophages. The induction of MerTK on galectin-3hi macrophages is essential for their functional maturation including efferocytosis and Spp1 transcriptional activity. MerTK+galectin-3hi macrophages showed a strong activation of both STAT3 and ERK (extracellular signal-regulated kinase). STAT3 inhibition suppressed the differentiation of osteopontin-producing MerTK+galectin-3hi macrophages, however, STAT3 activation was insufficient at inducing Spp1 transcriptional activity. ERK inhibition suppressed Spp1 transcriptional activation without affecting MerTK or galectin-3 expression. Concomitant activation of ERK is required for transcriptional activation of Spp1. In Il-10 knockout enhanced green fluorescent protein-Spp1 knock-in mice subjected to MI, osteopontin-producing macrophages decreased but did not disappear entirely. Interleukin-10 and macrophage colony-stimulating factor synergistically activated STAT3 and ERK and promoted the differentiation of osteopontin-producing MerTK+galectin-3hi macrophages in bone marrow-derived macrophages. Coadministration of anti-interleukin-10 plus anti-macrophage colony-stimulating factor antibodies substantially reduced the number of osteopontin-producing macrophages by more than anti-interleukin-10 antibody alone in post-MI hearts. Conclusions Interleukin-10 and macrophage colony-stimulating factor act synergistically to activate STAT3 and ERK in cardiac macrophages, which in turn upregulate the expression of galectin-3 and MerTK, leading to the functional maturation of osteopontin-producing macrophages.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Macrófagos/patología , Infarto del Miocardio/patología , Osteopontina/fisiología , Tirosina Quinasa c-Mer/fisiología , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Macrófagos/metabolismo , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Osteopontina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/fisiología , Tirosina Quinasa c-Mer/metabolismo
16.
PLoS One ; 15(6): e0234626, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32559239

RESUMEN

The benefits of inhaling hydrogen gas (H2) have been widely reported but its pharmacokinetics have not yet been sufficiently analyzed. We developed a new experimental system in pigs to closely evaluate the process by which H2 is absorbed in the lungs, enters the bloodstream, and is distributed, metabolized, and excreted. We inserted and secured catheters into the carotid artery (CA), portal vein (PV), and supra-hepatic inferior vena cava (IVC) to allow repeated blood sampling and performed bilateral thoracotomy to collapse the lungs. Then, using a hydrogen-absorbing alloy canister, we filled the lungs to the maximum inspiratory level with 100% H2. The pig was maintained for 30 seconds without resuming breathing, as if they were holding their breath. We collected blood from the three intravascular catheters after 0, 3, 10, 30, and 60 minutes and measured H2 concentration by gas chromatography. H2 concentration in the CA peaked immediately after breath holding; 3 min later, it dropped to 1/40 of the peak value. Peak H2 concentrations in the PV and IVC were 40% and 14% of that in the CA, respectively. However, H2 concentration decay in the PV and IVC (half-life: 310 s and 350 s, respectively) was slower than in the CA (half-life: 92 s). At 10 min, H2 concentration was significantly higher in venous blood than in arterial blood. At 60 min, H2 was detected in the portal blood at a concentration of 6.9-53 nL/mL higher than at steady state, and in the SVC 14-29 nL/mL higher than at steady state. In contrast, H2 concentration in the CA decreased to steady state levels. This is the first report showing that inhaled H2 is transported to the whole body by advection diffusion and metabolized dynamically.


Asunto(s)
Hidrógeno/farmacocinética , Administración por Inhalación , Animales , Recolección de Muestras de Sangre , Arterias Carótidas/metabolismo , Difusión , Hidrógeno/sangre , Metabolismo , Vena Porta/metabolismo , Porcinos , Vena Cava Inferior/metabolismo
17.
PLoS One ; 14(1): e0210103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30625197

RESUMEN

BACKGROUND: Patient with acute coronary syndrome benefits from early revascularization. However, methods for the selection of patients who require urgent revascularization from a variety of patients visiting the emergency room with chest symptoms is not fully established. Electrocardiogram is an easy and rapid procedure, but may contain crucial information not recognized even by well-trained physicians. OBJECTIVE: To make a prediction model for the needs for urgent revascularization from 12-lead electrocardiogram recorded in the emergency room. METHOD: We developed an artificial intelligence model enabling the detection of hidden information from a 12-lead electrocardiogram recorded in the emergency room. Electrocardiograms obtained from consecutive patients visiting the emergency room at Keio University Hospital from January 2012 to April 2018 with chest discomfort was collected. These data were splitted into validation and derivation dataset with no duplication in each dataset. The artificial intelligence model was constructed to select patients who require urgent revascularization within 48 hours. The model was trained with the derivation dataset and tested using the validation dataset. RESULTS: Of the consecutive 39,619 patients visiting the emergency room with chest discomfort, 362 underwent urgent revascularization. Of them, 249 were included in the derivation dataset and the remaining 113 were included in validation dataset. For the control, 300 were randomly selected as derivation dataset and another 130 patients were randomly selected for validation dataset from the 39,317 who did not undergo urgent revascularization. On validation, our artificial intelligence model had predictive value of the c-statistics 0.88 (95% CI 0.84-0.93) for detecting patients who required urgent revascularization. CONCLUSIONS: Our artificial intelligence model provides information to select patients who need urgent revascularization from only 12-leads electrocardiogram in those visiting the emergency room with chest discomfort.


Asunto(s)
Síndrome Coronario Agudo/diagnóstico , Dolor en el Pecho/diagnóstico , Diagnóstico por Computador/métodos , Electrocardiografía/métodos , Revascularización Miocárdica , Redes Neurales de la Computación , Síndrome Coronario Agudo/complicaciones , Síndrome Coronario Agudo/cirugía , Dolor en el Pecho/etiología , Conjuntos de Datos como Asunto , Toma de Decisiones Asistida por Computador , Diagnóstico Diferencial , Servicio de Urgencia en Hospital , Humanos , Selección de Paciente , Valor Predictivo de las Pruebas , Pronóstico , Sensibilidad y Especificidad , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA