Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(48): 54101-54110, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36399402

RESUMEN

Heterometallic metal-organic frameworks based on rare-earth metals (RE-MOFs) have potential in a number of applications where energy transfer between nearby metal atoms is required. This observation implies that it is important to understand the level of local mixing that is achieved between metals of different types during synthesis of RE-MOFs. Density functional theory calculations can give quantitative information on the relative energy of different configurations of RE-MOFs, but these calculations cannot be applied to the full range of medium- and long-range orderings that are possible in heterometallic materials. This limitation can be overcome using force field (FF)-based calculations if appropriate FFs are available. We show that an existing generic FF for MOFs, UFF4MOF, does not accurately predict energies of mixing in heterometallic Nd/Yb MOFs and introduce a modified FF to address this shortcoming. The resulting FF is used to explore metal orderings in large simulation volumes for a Nd/Yb MOF, illustrating the complexities that can arise in the structure of heterometallic RE-MOFs.

2.
ACS Appl Mater Interfaces ; 14(48): 54349-54358, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36399403

RESUMEN

Several studies suggest that metal ordering within metal-organic frameworks (MOFs) is important for understanding how MOFs behave in relevant applications; however, these siting trends can be difficult to determine experimentally. To garner insight into the energetic driving forces that may lead to nonrandom ordering within heterometallic MOFs, we employ density functional theory (DFT) calculations on several bimetallic metal-organic crystals composed of Nd and Yb metal atoms. We also investigate the metal siting trends for a newly synthesized MOF. Our DFT-based energy of mixing results suggest that Nd will likely occupy sites with greater access to electronegative atoms and that local homometallic domains within a mixed-metal Nd-Yb system are favored. We also explore the use of less computationally extensive methods such as classical force fields and cluster expansion models to understand their feasibility for large system sizes. This study highlights the impact of metal ordering on the energetic stability of heterometallic MOFs and crystal structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA