Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(5)2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37242686

RESUMEN

Real-time measurement is important in modern dissolution testing to aid in parallel drug characterisation and quality control (QC). The development of a real-time monitoring platform (microfluidic system, a novel eye movement platform with temperature sensors and accelerometers and a concentration probe setup) in conjunction with an in vitro model of the human eye (PK-Eye™) is reported. The importance of surface membrane permeability when modelling the PK-Eye™ was determined with a "pursing model" (a simplified setup of the hyaloid membrane). Parallel microfluidic control of PK-Eye™ models from a single source of pressure was performed with a ratio of 1:6 (pressure source:models) demonstrating scalability and reproducibility of pressure-flow data. Pore size and exposed surface area helped obtain a physiological range of intraocular pressure (IOP) within the models, demonstrating the need to reproduce in vitro dimensions as closely as possible to the real eye. Variation of aqueous humour flow rate throughout the day was demonstrated with a developed circadian rhythm program. Capabilities of different eye movements were programmed and achieved with an in-house eye movement platform. A concentration probe recorded the real-time concentration monitoring of injected albumin-conjugated Alexa Fluor 488 (Alexa albumin), which displayed constant release profiles. These results demonstrate the possibility of real-time monitoring of a pharmaceutical model for preclinical testing of ocular formulations.

2.
Pharmaceutics ; 14(6)2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35745839

RESUMEN

New in vitro prototypes (PK-Eye™) were tested with and without eye movement to understand diffusion and convection effects on intraocular clearance. Port placement in front ((i) ciliary inflow model) and behind the model lens ((ii) posterior inflow model) was used to study bevacizumab (1.25 mg/50 µL) and dexamethasone (0.1 mg/100 µL) in phosphate-buffered saline (PBS, pH 7.4) and simulated vitreal fluid (SVF). Dexamethasone was studied in a (iii) retinal-choroid-sclera (RCS) outflow model (with ciliary inflow and two outflow pathways). Ciliary vs. posterior inflow placement did not affect the half-life for dexamethasone at 2.0 µL/min using PBS (4.7 days vs. 4.8 days) and SVF (4.9 days with ciliary inflow), but it did decrease the half-life for bevacizumab in PBS (20.4 days vs. 2.4 days) and SVF (19.2 days vs. 10.8 days). Eye movement only affected the half-life of dexamethasone in both media. Dexamethasone in the RCS model showed approximately 20% and 75% clearance from the RCS and anterior outflows, respectively. The half-life of the protein was comparable to human data in the posterior inflow model. Shorter half-life values for a protein in a ciliary inflow model can be achieved with other eye movements. The RCS flow model with eye movement was comparable to human half-life data for dexamethasone.

3.
Pharmaceutics ; 12(10)2020 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-33096803

RESUMEN

Proteins and peptides have emerged in recent years to treat a wide range of multifaceted diseases such as cancer, diabetes and inflammation. The emergence of polypeptides has yielded advancements in the fields of biopharmaceutical production and formulation. Polypeptides often display poor pharmacokinetics, limited permeability across biological barriers, suboptimal biodistribution, and some proclivity for immunogenicity. Frequent administration of polypeptides is generally required to maintain adequate therapeutic levels, which can limit efficacy and compliance while increasing adverse reactions. Many strategies to increase the duration of action of therapeutic polypeptides have been described with many clinical products having been developed. This review describes approaches to optimise polypeptide delivery organised by the commonly used routes of administration. Future innovations in formulation may hold the key to the continued successful development of proteins and peptides with optimal clinical properties.

4.
Eur J Pharm Biopharm ; 153: 130-149, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32445965

RESUMEN

The majority of blinding conditions arise due to chronic pathologies in the retina. During the last two decades, antibody-based medicines administered by intravitreal injection directly into the back of the eye have revolutionised the treatment of chronic retinal diseases characterised by uncontrolled blood vessel growth, e.g. wet age-related macular degeneration (wAMD), diabetic retinopathy (DR) and choroidal neovascularisation (CNV). Although intravitreal injections have become a commonly performed ophthalmic procedure that provides a reproducible dose to maximise drug exposure in the back of the eye, there is a need to minimise the frequency and cumulative number of intravitreal injections. Developing longer acting intraocular therapies is one key strategy that is being pursued. Pharmaceutical preclinical development of intraocular medicines is heavily reliant on the use of animal models to determine ocular tolerability, pharmacokinetics, biodistribution and drug stability. Animal eyes are different from human eyes, such as the anatomy, organisation of vitreous macromolecular structure, aqueous outflow and immune response; all which impacts the ability to translate preclinical data into a clinical product. The development of longer acting protein formulations using animals is also limited because animals reject human proteins. Preclinical strategies also do not account for differences in the vitreous due to ageing and whether a vitrectomy has been performed. Intraocular formulations must reside and clear from the vitreous body, so there is a need for the formulation scientist to have knowledge about vitreous structure and physiology to facilitate preclinical development strategies. Preclinical pharmaceutical development paradigms used to create therapies for other routes of administration (e.g. oral, subcutaneous, pulmonary and intravenous) are grounded on the use of preclinical in vitro models. Analogous pharmaceutical strategies with appropriately designed in vitro models that can account for intraocular mass transfer to estimate pharmacokinetic profiles can be used to develop in vitro-in vivo correlations (IVIVCs) to accelerate the preclinical optimisation of long-acting intraocular formulations. Data obtained can then inform preclinical in vivo and clinical studies. With the now widespread use of intravitreal injections, it is also important during early preclinical studies to ensure there is a viable regulatory pathway for new therapies. Knowledge of the physiological, pharmaceutical and regulatory factors will help in the development of long-acting intravitreal medicines, which is rapidly evolving into a distinct pharmaceutical discipline.


Asunto(s)
Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Animales , Química Farmacéutica/métodos , Neovascularización Coroidal/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos , Humanos , Inyecciones Intravítreas/métodos , Degeneración Macular/tratamiento farmacológico , Retina/efectos de los fármacos , Enfermedades de la Retina/tratamiento farmacológico , Distribución Tisular/fisiología , Cuerpo Vítreo/efectos de los fármacos
5.
Pharmaceutics ; 11(8)2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31374925

RESUMEN

Intravitreal injections have become the cornerstone of retinal care and one of the most commonly performed procedures across all medical specialties. The impact of hydrodynamic forces of intravitreal solutions when injected into vitreous or vitreous substitutes has not been well described. While computational models do exist, they tend to underestimate the starting surface area of an injected bolus of a drug. Here, we report the dispersion profile of a dye bolus (50 µL) injected into different vitreous substitutes of varying viscosities, surface tensions, and volumetric densities. A novel 3D printed in vitro model of the vitreous cavity of the eye was designed to visualize the dispersion profile of solutions when injected into the following vitreous substitutes-balanced salt solution (BSS), sodium hyaluronate (HA), and silicone oils (SO)-using a 30G needle with a Reynolds number (Re) for injection ranging from approximately 189 to 677. Larger bolus surface areas were associated with faster injection speeds, lower viscosity of vitreous substitutes, and smaller difference in interfacial surface tensions. Boluses exhibited buoyancy when injected into standard S1000. The hydrodynamic properties of liquid vitreous substitutes influence the initial injected bolus dispersion profile and should be taken into account when simulating drug dispersion following intravitreal injection at a preclinical stage of development, to better inform formulations and performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA