Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225703

RESUMEN

The diversification of angiosperms has largely been attributed to adaptive radiation of their pollination and mating systems, which are relevant drivers of the macroevolution processes. The fig (Ficus, Moraceae) and fig wasp (Agaonidae, Hymenoptera) interaction is an example of obligate mutualism. Passive and active pollination modes have been associated with morphological traits in both partners. However, more information is required to assess the relationship between floral traits and pollination modes, particularly in Neotropical Ficus species. This study evaluates the morphological traits of figs and fig wasps regarding pollination modes in species belonging to Neotropical Ficus sections (three species each of Americanae and Pharmacosycea). Pollination mode was identified by floral morphology, anther/ovule ratio, and specialized structures fig wasps use for pollen transport (pollen pocket and coxal combs). Fig species in sect. Americanae are actively pollinated because pistillate flowers form a synstigma, present anther/ovule ratios <0.11, and their pollinator Pegoscapus fig wasps have pollen pockets and coxal combs. In contrast, species in sect. Pharmacosycea have free pistillate flowers, with anther/ovule ratios >0.27; they are pollinated by Tetrapus wasps, which lack specialized structures to carry pollen. Each species of Ficus was associated with a single morphospecies of fig wasp. The results support previous contributions that consider reciprocal morphological traits between fig species and their pollinating wasps as evidence of a close co-evolutionary history.

2.
Ecology ; 89(7): 1908-20, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18705377

RESUMEN

A central goal of comparative plant ecology is to understand how functional traits vary among species and to what extent this variation has adaptive value. Here we evaluate relationships between four functional traits (seed volume, specific leaf area, wood density, and adult stature) and two demographic attributes (diameter growth and tree mortality) for large trees of 240 tree species from five Neotropical forests. We evaluate how these key functional traits are related to survival and growth and whether similar relationships between traits and demography hold across different tropical forests. There was a tendency for a trade-off between growth and survival across rain forest tree species. Wood density, seed volume, and adult stature were significant predictors of growth and/or mortality. Both growth and mortality rates declined with an increase in wood density. This is consistent with greater construction costs and greater resistance to stem damage for denser wood. Growth and mortality rates also declined as seed volume increased. This is consistent with an adaptive syndrome in which species tolerant of low resource availability (in this case shade-tolerant species) have large seeds to establish successfully and low inherent growth and mortality rates. Growth increased and mortality decreased with an increase in adult stature, because taller species have a greater access to light and longer life spans. Specific leaf area was, surprisingly, only modestly informative for the performance of large trees and had ambiguous relationships with growth and survival. Single traits accounted for 9-55% of the interspecific variation in growth and mortality rates at individual sites. Significant correlations with demographic rates tended to be similar across forests and for phylogenetically independent contrasts as well as for cross-species analyses that treated each species as an independent observation. In combination, the morphological traits explained 41% of the variation in growth rate and 54% of the variation in mortality rate, with wood density being the best predictor of growth and mortality. Relationships between functional traits and demographic rates were statistically similar across a wide range of Neotropical forests. The consistency of these results strongly suggests that tropical rain forest species face similar trade-offs in different sites and converge on similar sets of solutions.


Asunto(s)
Ecosistema , Desarrollo de la Planta , Árboles/fisiología , Clima Tropical , Hojas de la Planta/crecimiento & desarrollo , Dinámica Poblacional , Plantones
3.
Am J Bot ; 88(10): 1801-12, 2001 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21669613

RESUMEN

Seedling morphology of 210 species (173 trees and 37 lianas) was studied from a community perspective to identify major patterns of seedling functional types in a Mexican rain forest. Five types of seedlings were distinguished: cryptocotylar with reserve storage or absorption cotyledons (epigeal [CER] and hypogeal [CHR]), phanerocotylar epigeal, either with photosynthetic cotyledons (PEF) or with reserve storage or absorption cotyledons (PER), and phanerocotylar hypogeal with reserve cotyledons (PHR). The most common seedling type was PEF (49.5%), followed by CHR (31.4%), PER (9.5%), PHR (7.2%), and CER (2.4%). Excepting the CER type, seedling type frequencies did not differ between trees and lianas. The PEF seedlings had the lightest seeds, whereas CHR seedlings had the heaviest ones. Pioneer trees showed lighter seeds than persistent trees or lianas in species with PEF but not in species with PER. Pioneer trees (38 species) showed three seedling types and the most common was PEF (82%). Persistent trees (135 species) showed the five seedling types but PEF (43%) and CHR (37%) were the most frequent. Seedling type frequencies differed among dispersal syndrome groups. The animal dispersal syndrome was significantly more frequent in species with CHR. Our results show an evolutionary convergence of seedling types at the community level worldwide and the existence of a phylogenetic inertia in the evolution of initial seedling morphology. A comparison among eight tropical communities indicated on average that PEF is the most frequent type and CER the least common, although the relative frequency of each seedling type differs among communities, particularly between Neotropical and Paleotropical sites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA