Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dis Model Mech ; 15(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044452

RESUMEN

RET is a receptor tyrosine kinase with oncogenic potential in the mammary epithelium. Several receptors with oncogenic activity in the breast are known to participate in specific developmental stages. We found that RET is differentially expressed during mouse mammary gland development: RET is present in lactation and its expression dramatically decreases in involution, the period during which the lactating gland returns to a quiescent state after weaning. Based on epidemiological and pre-clinical findings, involution has been described as tumor promoting. Using the Ret/MTB doxycycline-inducible mouse transgenic system, we show that sustained expression of RET in the mammary epithelium during the post-lactation transition to involution is accompanied by alterations in tissue remodeling and an enhancement of cancer potential. Following constitutive Ret expression, we observed a significant increase in neoplastic lesions in the post-involuting versus the virgin mammary gland. Furthermore, we show that abnormal RET overexpression during lactation promotes factors that prime involution, including premature activation of Stat3 signaling and, using RNA sequencing, an acute-phase inflammatory signature. Our results demonstrate that RET overexpression negatively affects the normal post-lactation transition.


Asunto(s)
Glándulas Mamarias Humanas , Neoplasias , Animales , Femenino , Humanos , Lactancia/fisiología , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Ratones , Neoplasias/patología , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Factor de Transcripción STAT3/metabolismo
2.
J Mammary Gland Biol Neoplasia ; 25(1): 13-26, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080788

RESUMEN

Ret receptor tyrosine kinase is a proto-oncogene that participates in development of various cancers. Several independent studies have recently identified Ret as a key player in breast cancer. Although Ret overexpression and function have been under investigation, mainly in estrogen receptor positive breast cancer, a more comprehensive analysis of the impact of recurring Ret alterations in breast cancer is needed. This review consolidates the current knowledge of Ret alterations and their potential effects in breast cancer. We discuss and integrate data on Ret changes in different breast cancer subtypes and potential function in progression, as well as the participation of distinct Ret network signaling partners in these processes. We propose that it will be essential to define a shared molecular feature of tumors with alteration in Ret receptor, be this at the genetic level or via overexpression in order to design effective therapies to target the Ret pathway. Here we review experimental evidence from basic research and pre-clinical studies concentrating on Ret alterations as potential biomarkers for recurrence, and we discuss the possibility that targeting the Ret pathway might in the future become a treatment for breast cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Mutación , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-ret/genética
3.
Oncogene ; 37(29): 4046-4054, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29695833

RESUMEN

The receptor tyrosine kinase Ret, a key gain-of-function mutated oncoprotein in thyroid carcinomas, has recently been implicated in other cancer types. While Ret copy number gains and mutations have been reported at low frequencies in breast tumors, we and others have reported that Ret is overexpressed in about 40% of human tumors and this correlates with poor patient prognosis. Ret activation regulates numerous intracellular pathways related to proliferation and inflammation, but it is not known whether abnormal Ret expression is sufficient to induce mammary carcinomas. Using a novel doxycycline-inducible transgenic mouse model with the MMTV promoter controlling Ret expression, we show that overexpression of wild-type Ret in the mammary epithelium produces mammary tumors, displaying a morphology that recapitulates characteristics of human luminal breast tumors. Ret-evoked tumors are estrogen receptor positive and negative for progesterone receptor. Moreover, tumors rapidly regress after doxycycline withdrawal, indicating that Ret is the driving oncoprotein. Using next-generation sequencing, we examined the levels of transcripts in these tumors, confirming a luminal signature. Ret-evoked tumors have been passaged in mice and used to test novel therapeutic approaches. Importantly, we have determined that tumors are resistant to endocrine therapy, but respond successfully to treatment with a Ret kinase inhibitor. Our data provide the first compelling evidence for an oncogenic role of non-mutated Ret in the mammary gland and are an incentive for clinical development of Ret as a cancer biomarker and therapeutic target.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias Mamarias Animales/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Células MCF-7 , Glándulas Mamarias Humanas/metabolismo , Ratones , Ratones Transgénicos/metabolismo , Receptores de Progesterona/metabolismo
4.
Oncotarget ; 9(9): 8278-8289, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29492194

RESUMEN

Tristetraprolin (TTP), an mRNA-binding protein that negatively controls levels of inflammatory factors, is highly expressed in the lactating mouse mammary gland. To determine the biological relevance of this expression profile, we developed bi-transgenic mice in which this protein is specifically down-regulated in the secretory mammary epithelium in the secretory mammary epithelium during lactation. Our data show that TTP conditional KO mice produced underweight litters, possibly due to massive mammary cell death induced during lactation without the requirement of additional stimuli. This effect was linked to overexpression of inflammatory cytokines, activation of STAT3 and down-regulation of AKT phosphorylation. Importantly, blocking TNFα activity in the lactating conditional TTP KO mice inhibited cell death and similar effects were observed when this treatment was applied to wild-type animals during 48 h after weaning. Therefore, our results demonstrate that during lactation TTP wards off early involution by preventing the increase of local inflammatory factors. In addition, our data reveal the relevance of locally secreted TNFα for triggering programmed cell death after weaning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA