Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 34(12)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36538812

RESUMEN

Discovery of structure-property relationships in thin film alloys of complex metal oxides enabled by high-throughput materials synthesis and characterization facilities is demonstrated here with a case-study. Thin films of binary transition metal oxides (Ti-Zn) are prepared by pulsed laser deposition with continuously varying Ti:Zn ratio, creating combinatorial samples for exploration of the properties of this material family. The atomic structure and electronic properties are probed by spatially resolved techniques including x-ray absorption near edge structures (XANES) and x-ray fluorescence (XRF) at the Ti and Zn K-edge, x-ray diffraction, and spectroscopic ellipsometry. The observed properties as a function of Ti:Zn ratio are resolved into mixtures of five distinguishable phases by deploying multivariate curve resolution analysis on the XANES spectral series, under constraints set by results from the other characterization techniques. First-principles computations based on density function theory connect the observed properties of each distinct phase with structural and spectral characteristics of crystalline polymorphs of Ti-Zn oxide. Continuous tuning of the optical absorption edge as a function of Ti:Zn ratio, including the unusual observation of negative optical bowing, exemplifies a functional property of the film correlated to the phase evolution.

2.
J Am Chem Soc ; 144(14): 6504-6515, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35353518

RESUMEN

Single-molecule circuits with group 8 metallocenes are formed without additional linker groups in scanning tunneling microscope-based break junction (STMBJ) measurements at cryogenic and room-temperature conditions with gold (Au) electrodes. We investigate the nature of this direct gold-π binding motif and its effect on molecular conductance and persistence characteristics during junction evolution. The measurement technique under cryogenic conditions tracks molecular plateaus through the full cycle of extension and compression. Analysis reveals that junction persistence when the metal electrodes are pushed together correlates with whether electrodes are locally sharp or blunt, suggesting distinct scenarios for metallocene junction formation and evolution. The top and bottom surfaces of the "barrel"-shaped metallocenes present the electron-rich π system of cyclopentadienyl rings, which interacts with the gold electrodes in two distinct ways. An undercoordinated gold atom on a sharp tip forms a donor-acceptor bond to a specific carbon atom in the ring. However, a small, flat patch on a dull tip can bind more strongly to the ring as a whole through van der Waals interactions. Density functional theory (DFT)-based calculations of model electrode structures provide an atomic-scale picture of these scenarios, demonstrating the role of these bonding motifs during junction evolution and showing that the conductance is relatively independent of tip atomic-scale structure. The nonspecific interaction of the cyclopentadienyl rings with the electrodes enables extended conductance plateaus, a mechanism distinct from that identified for the more commonly studied, rod-shaped organic molecular wires.


Asunto(s)
Oro , Nanotecnología , Electrodos , Oro/química , Metalocenos , Nanotecnología/métodos , Compuestos Organometálicos
3.
Nanoscale ; 13(44): 18473-18482, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34580697

RESUMEN

High resolution non-contact atomic force microscopy measurements characterize assemblies of trimesic acid molecules on Cu(111) and the link group interactions, providing the first fingerprints utilizing CO-based probes for this widely studied paradigm for hydrogen bond driven molecular self assembly. The enhanced submolecular resolution offered by this technique uniquely reveals key aspects of the competing interactions. Accurate comparison between full-density-based modeled images and experiment allows to identify key structural elements in the assembly in terms of the electron-withdrawing character of the carboxylic groups, interactions of those groups with Cu atoms in the surface, and the valence electron density in the intermolecular region of the hydrogen bonds. This study of trimesic acid assemblies on Cu(111) combining high resolution atomic force microscopy measurements with theory and simulation forges clear connections between fundamental chemical properties of molecules and key features imprinted in force images with submolecular resolution.

4.
Angew Chem Int Ed Engl ; 59(35): 14835-14841, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32421919

RESUMEN

Weak binding of hydrogen atoms to the 2H-MoS2 basal plane renders MoS2 inert as an electrocatalyst for the hydrogen evolution reaction. Transition-metal doping can activate neighboring sulfur atoms in the MoS2 basal plane to bind hydrogen more strongly. Our theoretical studies show strong variation in the degree of activation by dopants across the 3d transition-metal series. To understand the trends in activation, we propose a model based on the electronic promotion energy required to partially open the full valence shell of a local S atom and therefore enable it to bond with a H atom. In general, the promotion is achieved through an electron transfer from the S to neighboring metal-atom sites. Furthermore, we demonstrate a specific, electronic-structure-based descriptor for the hydrogen-binding strength: Δdp , the local interband energy separation between the lowest empty d-states on the dopant metal atoms and occupied p-states on S. This model can be used to provide guidelines for chalcogen activation in future catalyst design based on doped transition-metal dichalcogenides.

6.
Nano Lett ; 19(6): 3457-3463, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31046292

RESUMEN

Due to its chemical stability, titania (TiO2) thin films increasingly have significant impact when applied as passivation layers. However, optimization of growth conditions, key to achieving essential film quality and effectiveness, is challenging in the few-nanometers thickness regime. Furthermore, the atomic-scale structure of the nominally amorphous titania coating layers, particularly when applied to nanostructured supports, is difficult to probe. In this Letter, the quality of titania layers grown on ZnO nanowires is optimized using specific strategies for processing of the nanowire cores prior to titania coating. The best approach, low-pressure O2 plasma treatment, results in significantly more-uniform titania films and a conformal coating. Characterization using X-ray absorption near edge structure (XANES) reveals the titania layer to be highly amorphous, with features in the Ti spectra significantly different from those observed for bulk TiO2 polymorphs. Analysis based on first-principles calculations suggests that the titania shell contains a substantial fraction of under-coordinated Ti4+ ions. The best match to the experimental XANES spectrum is achieved with a "glassy" TiO2 model that contains ∼50% of under-coordinated Ti4+ ions, in contrast to bulk crystalline TiO2 that only contains 6-coordinated Ti4+ ions in octahedral sites.

7.
Chem Sci ; 10(3): 930-935, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30774887

RESUMEN

N-heterocyclic carbenes (NHCs) bind very strongly to transition metals due to their unique electronic structure featuring a divalent carbon atom with a lone pair in a highly directional sp2-hybridized orbital. As such, they can be assembled into monolayers on metal surfaces that have enhanced stability compared to their thiol-based counterparts. The utility of NHCs to form such robust self-assembled monolayers (SAMs) was only recently recognized and many fundamental questions remain. Here we investigate the structure and geometry of a series of NHCs on Au(111) using high-resolution X-ray photoelectron spectroscopy and density functional theory calculations. We find that the N-substituents on the NHC ring strongly affect the molecule-metal interaction and steer the orientation of molecules in the surface layer. In contrast to previous reports, our experimental and theoretical results provide unequivocal evidence that NHCs with N-methyl substituents bind to undercoordinated adatoms to form flat-lying complexes. In these SAMs, the donor-acceptor interaction between the NHC lone pair and the undercoordinated Au adatom is primarily responsible for the strong bonding of the molecules to the surface. NHCs with bulkier N-substituents prevent the formation of such complexes by forcing the molecules into an upright orientation. Our work provides unique insights into the bonding and geometry of NHC monolayers; more generally, it charts a clear path to manipulating the interaction between NHCs and metal surfaces using traditional coordination chemistry synthetic strategies.

8.
Phys Rev Lett ; 118(21): 219902, 2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28598652

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.113.176802.

10.
Nat Commun ; 8: 15400, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537250

RESUMEN

Multiple lithium-ion transport pathways and local phase changes upon lithiation in silver hollandite are revealed via in situ microscopy including electron diffraction, imaging and spectroscopy, coupled with density functional theory and phase field calculations. We report unexpected inter-nanorod lithium-ion transport, where the reaction fronts and kinetics are maintained within the neighbouring nanorod. Notably, this is the first time-resolved visualization of lithium-ion transport within and between individual nanorods, where the impact of oxygen deficiencies is delineated. Initially, fast lithium-ion transport is observed along the long axis with small net volume change, resulting in two lithiated silver hollandite phases distinguishable by orthorhombic distortion. Subsequently, a slower reaction front is observed, with formation of polyphase lithiated silver hollandite and face-centred-cubic silver metal with substantial volume expansion. These results indicate lithium-ion transport is not confined within a single nanorod and may provide a paradigm shift for one-dimensional tunnelled materials, particularly towards achieving high-rate capability.

11.
Nano Lett ; 17(1): 348-354, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28073258

RESUMEN

The leading edge of catalysis research motivates physical understanding of the growth of nanoscale oxide structures on different supporting oxide materials that are themselves also nanostructured. This research opens up for consideration a diverse range of facets on the support material, versus the single facet typically involved in wide-area growth of thin films. Here, we study the growth of ceria nanoarchitectures on practical anatase titania powders as a showcase inspired by recent experiments. Density functional theory (DFT)-based methods are employed to characterize and rationalize the broad array of low energy nanostructures that emerge. Using a bottom-up approach, we are able to identify and characterize the underlying mechanisms for the facet-dependent growth of various ceria motifs on anatase titania based on formation energy. These motifs include 0D clusters, 1D chains, 2D plates, and 3D nanoparticles. The ceria growth mode and morphology are determined by the interplay of several factors including the role of the common cation valence, the interface template effect for different facets of the anatase support, enhanced ionic binding for more compact ceria motifs, and the local structural flexibility of oxygen ions in bridging the interface between anatase and ceria structures.


Asunto(s)
Cerio/química , Modelos Moleculares , Nanoestructuras/química , Titanio/química , Catálisis , Cinética , Oxígeno/química , Polvos , Relación Estructura-Actividad , Propiedades de Superficie , Termodinámica
12.
Acc Chem Res ; 49(3): 452-60, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26938931

RESUMEN

Over the past 10 years, there has been tremendous progress in the measurement, modeling and understanding of structure-function relationships in single molecule junctions. Numerous research groups have addressed significant scientific questions, directed both to conductance phenomena at the single molecule level and to the fundamental chemistry that controls junction functionality. Many different functionalities have been demonstrated, including single-molecule diodes, optically and mechanically activated switches, and, significantly, physical phenomena with no classical analogues, such as those based on quantum interference effects. Experimental techniques for reliable and reproducible single molecule junction formation and characterization have led to this progress. In particular, the scanning tunneling microscope based break-junction (STM-BJ) technique has enabled rapid, sequential measurement of large numbers of nanoscale junctions allowing a statistical analysis to readily distinguish reproducible characteristics. Harnessing fundamental link chemistry has provided the necessary chemical control over junction formation, enabling measurements that revealed clear relationships between molecular structure and conductance characteristics. Such link groups (amines, methylsuflides, pyridines, etc.) maintain a stable lone pair configuration that selectively bonds to specific, undercoordinated transition metal atoms available following rupture of a metal point contact in the STM-BJ experiments. This basic chemical principle rationalizes the observation of highly reproducible conductance signatures. Subsequently, the method has been extended to probe a variety of physical phenomena ranging from basic I-V characteristics to more complex properties such as thermopower and electrochemical response. By adapting the technique to a conducting cantilever atomic force microscope (AFM-BJ), simultaneous measurement of the mechanical characteristics of nanoscale junctions as they are pulled apart has given complementary information such as the stiffness and rupture force of the molecule-metal link bond. Overall, while the BJ technique does not produce a single molecule circuit for practical applications, it has proved remarkably versatile for fundamental studies. Measured data and analysis have been combined with atomic-scale theory and calculations, typically performed for representative junction structures, to provide fundamental physical understanding of structure-function relationships. This Account integrates across an extensive series of our specific nanoscale junction studies which were carried out with the STM- and AFM-BJ techniques and supported by theoretical analysis and density functional theory based calculations, with emphasis on the physical characteristics of the measurement process and the rich data sets that emerge. Several examples illustrate the impact of measured trends based on the most probable values for key characteristics (obtained from ensembles of order 1000-10 000 individual junctions) to build a solid picture of conductance phenomena as well as attributes of the link bond chemistry. The key forward-looking question posed here is the extent to which the full data sets represented by the individual trajectories can be analyzed to address structure-function questions at the level of individual junctions. Initial progress toward physical modeling of conductance of individual junctions indicates trends consistent with physical junction structures. Analysis of junction mechanics reveals a scaling procedure that collapses existing data onto a universal force-extension curve. This research directed to understanding the distribution of structures and physical characteristics addresses fundamental questions concerning the interplay between chemical control and stochastically driven diversity.


Asunto(s)
Relación Estructura-Actividad , Microscopía de Fuerza Atómica , Reproducibilidad de los Resultados
13.
Nano Lett ; 15(6): 4143-9, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25942441

RESUMEN

Charge transport properties of metal-molecule interfaces depend strongly on the character of molecule-electrode interactions. Although through-bond coupled systems have attracted the most attention, through-space coupling is important in molecular systems when, for example, through-bond coupling is suppressed due to quantum interference effects. To date, a probe that clearly distinguishes these two types of coupling has not yet been demonstrated. Here, we investigate the origin of flicker noise in single molecule junctions and demonstrate how the character of the molecule-electrode coupling influences the flicker noise behavior of single molecule junctions. Importantly, we find that flicker noise shows a power law dependence on conductance in all junctions studied with an exponent that can distinguish through-space and through-bond coupling. Our results provide a new and powerful tool for probing and understanding coupling at the metal-molecule interface.

14.
Nano Lett ; 15(5): 2992-7, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25816155

RESUMEN

We have identified excited exciton states in monolayers of MoS2 and WS2 supported on fused silica by means of photoluminescence excitation spectroscopy. In monolayer WS2, the positions of the excited A exciton states imply an exciton binding energy of 0.32 eV. In monolayer MoS2, excited exciton transitions are observed at energies of 2.24 and 2.34 eV. Assigning these states to the B exciton Rydberg series yields an exciton binding energy of 0.44 eV.


Asunto(s)
Disulfuros/química , Molibdeno/química , Nanotecnología , Compuestos de Tungsteno/química , Luminiscencia , Semiconductores , Análisis Espectral
15.
Phys Rev Lett ; 113(17): 176802, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25379929

RESUMEN

A first-principles approach is demonstrated for calculating the relationship between an aqueous semiconductor interface structure and energy level alignment. The physical interface structure is sampled using density functional theory based molecular dynamics, yielding the interface electrostatic dipole. The GW approach from many-body perturbation theory is used to place the electronic band edge energies of the semiconductor relative to the occupied 1b1 energy level in water. The application to the specific cases of nonpolar (101¯0) facets of GaN and ZnO reveals a significant role for the structural motifs at the interface, including the degree of interface water dissociation and the dynamical fluctuations in the interface Zn-O and O-H bond orientations. These effects contribute up to 0.5 eV.

16.
Phys Rev Lett ; 113(7): 076802, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25170725

RESUMEN

We have experimentally determined the energies of the ground and first four excited excitonic states of the fundamental optical transition in monolayer WS_{2}, a model system for the growing class of atomically thin two-dimensional semiconductor crystals. From the spectra, we establish a large exciton binding energy of 0.32 eV and a pronounced deviation from the usual hydrogenic Rydberg series of energy levels of the excitonic states. We explain both of these results using a microscopic theory in which the nonlocal nature of the effective dielectric screening modifies the functional form of the Coulomb interaction. These strong but unconventional electron-hole interactions are expected to be ubiquitous in atomically thin materials.

17.
J Chem Phys ; 141(7): 074705, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25149804

RESUMEN

We extend our previous work on singlet exciton fission in isolated dimers to the case of crystalline materials, focusing on pentacene as a canonical and concrete example. We discuss the proper interpretation of the character of low-lying excited states of relevance to singlet fission. In particular, we consider a variety of metrics for measuring charge-transfer character, conclusively demonstrating significant charge-transfer character in the low-lying excited states. The impact of this electronic structure on the subsequent singlet fission dynamics is assessed by performing real-time master-equation calculations involving hundreds of quantum states. We make direct comparisons with experimental absorption spectra and singlet fission rates, finding good quantitative agreement in both cases, and we discuss the mechanistic distinctions that exist between small isolated aggregates and bulk systems.

18.
J Am Chem Soc ; 136(30): 10654-60, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-24983697

RESUMEN

Singlet fission, the conversion of a singlet excitation into two triplet excitations, is a viable route to improved solar-cell efficiency. Despite active efforts to understand the singlet fission mechanism, which would aid in the rational design of new materials, a comprehensive understanding of mechanistic principles is still lacking. Here, we present the first study of singlet fission in crystalline hexacene which, together with tetracene and pentacene, enables the elucidation of mechanistic trends. We characterize the static and transient optical absorption and combine our findings with a theoretical analysis of the relevant electronic couplings and rates. We find a singlet fission time scale of 530 fs, which is orders of magnitude faster than tetracene (10-100 ps) but significantly slower than pentacene (80-110 fs). We interpret this increased time scale as a multiphonon relaxation effect originating from a large exothermicity and present a microscopic theory that quantitatively reproduces the rates in the acene family.

19.
ACS Nano ; 8(7): 7522-30, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24945851

RESUMEN

A direct measurement of the potential energy surface that characterizes individual chemical bonds in complex materials has fundamental significance for many disciplines. Here, we demonstrate that the energy profile for metallic single-atom contacts and single-molecule junctions can be mapped by fitting ambient atomic force microscope measurements carried out in the near-equilibrium regime to a physical, but simple, functional form. We extract bond energies for junctions formed through metallic bonds as well as metal-molecule link bonds from atomic force microscope data and find that our results are in excellent quantitative agreement with density functional theory based calculations for exemplary junction structures. Furthermore, measurements from a large number of junctions can be collapsed to a single, universal force-extension curve, thus revealing a surprising degree of similarity in the overall shape of the potential surface that governs these chemical bonds. Compared to previous studies under ambient conditions where analysis was confined to trends in rupture force, our approach significantly expands the quantitative information extracted from these measurements, particularly allowing analysis of the trends in bond energy directly.

20.
Nano Lett ; 14(7): 3869-75, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24933687

RESUMEN

Molybdenum disulfide bilayers with well-defined interlayer twist angle were constructed by stacking single-crystal monolayers. Varying interlayer twist angle results in strong tuning of the indirect optical transition energy and second-harmonic generation and weak tuning of direct optical transition energies and Raman mode frequencies. Electronic structure calculations show the interlayer separation changes with twist due to repulsion between sulfur atoms, resulting in shifts of the indirect optical transition energies. These results show that interlayer alignment is a crucial variable in tailoring the properties of two-dimensional heterostructures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA