Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39230362

RESUMEN

We describe the design of a Thomson scattering (TS) diagnostic to be used on the SMall Aspect Ratio Tokamak (SMART). SMART is a spherical tokamak being commissioned in Spain that aims to explore positive triangularity and negative triangularity plasma scenarios at a low aspect ratio. The SMART TS diagnostic is designed to operate at high spatial resolution, 6 mm scattering length in the low-field side and 9 mm in the high-field side regions, and a wide dynamic range, electron temperature from 1 eV to 1 keV and density from 5×1018m-3 to 1×1020m-3, to resolve large gradients formed at the plasma edge and in the scrape-off layer (SOL) under different triangularities and low aspect ratios. A 2 J @1064 nm laser will be used that is capable of operating in the burst mode at 1, 2, and 4 kHz to investigate fast phenomena and at 30 Hz to study 1 s (or more) long discharges. The scattered light will be collected over an angular range of 60° - 120° from 28 spatial points in the midplane covering the entire plasma width and the outer midplane SOL. Each scattering signal will be spectrally resolved on five wavelength channels of a polychromator to obtain the electron temperature measurement. We will also present a method to monitor in situ laser alignment in the core during calibrations and plasma operations.

2.
Rev Sci Instrum ; 81(12): 123508, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21198024

RESUMEN

A major upgrade to the ruby Thomson scattering (TS) system has been designed and implemented on the Mega-ampere spherical tokamak (MAST). MAST is equipped with two TS systems, a Nd:YAG laser system and a ruby laser system. Apart from common collection optics each system provides independent measurements of the electron temperature and density profile. This paper focuses on the recent upgrades to the ruby TS system. The upgraded ruby TS system measures 512 points across the major radius of the MAST vessel. The ruby laser can deliver one 10 J 40 ns pulse at 1 Hz or two 5 J pulses separated by 100-800 µs. The Thomson scattered light is collected at F/15 over 1.4 m. This system can resolve small (7 mm) structures at 200 points in both the electron temperature and density channels at high optical contrast; ∼50% modulated transfer function. The system is fully automated for each MAST discharge and requires little adjustment. The estimated measurement error for a 7 mm radial point is <4% of T(e) and <3% of n(e) in the range of 40 eV to 2 keV, for a density of n(e)=2×10(19) m(-3). The photon statistics at lower density can be increased by binning in the radial direction as desired. A new intensified CCD camera design allows the ruby TS system to take two snapshots separated with a minimum time of 230 µs. This is exploited to measure two density and temperature profiles or to measure the plasma background light.

3.
Rev Sci Instrum ; 79(10): 10E730, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19044546

RESUMEN

A new infrared Thomson scattering system has been designed for the MAST tokamak. The system will measure at 120 spatial points with approximately 10 mm resolution across the plasma. Eight 30 Hz 1.6 J Nd:YAG lasers will be combined to produce a sampling rate of 240 Hz. The lasers will follow separate parallel beam paths to the MAST vessel. Scattered light will be collected at approximately f/6 over scattering angles ranging from 80 degrees to 120 degrees. The laser energy and lens size, relative to an existing 1.2 J f/12 system, greatly increases the number of scattered photons collected per unit length of laser beam. This is the third generation of this polychromator to be built and a number of modifications have been made to facilitate mass production and to improve performance. Detected scattered signals will be digitized at a rate of 1 GS/s by 8 bit analog to digital converters (ADCs.) Data may be read out from the ADCs between laser pulses to allow for real-time analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA