Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(20): 17834-17840, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37251121

RESUMEN

Morphological measurements of nanoparticles in electron microscopy images are tedious, laborious, and often succumb to human errors. Deep learning methods in artificial intelligence (AI) paved the way for automated image understanding. This work proposes a deep neural network (DNN) for the automated segmentation of a Au spiky nanoparticle (SNP) in electron microscopic images, and the network is trained with a spike-focused loss function. The segmented images are used for the growth measurement of the Au SNP. The auxiliary loss function captures the spikes of the nanoparticle, which prioritizes the detection of spikes in the border regions. The growth of the particles measured by the proposed DNN is as good as the measurement in manually segmented images of the particles. The proposed DNN composition with the training methodology meticulously segments the particle and consequently provides accurate morphological analysis. Furthermore, the proposed network is tested on an embedded system for integration with the microscope hardware for real-time morphological analysis.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37028308

RESUMEN

A frequent cause of auto accidents is disregarding the proximal traffic of an ego-vehicle during lane changing. Presumably, in a split-second-decision situation we may prevent an accident by predicting the intention of a driver before her action onset using the neural signals data, meanwhile building the perception of surroundings of a vehicle using optical sensors. The prediction of an intended action fused with the perception can generate an instantaneous signal that may replenish the driver's ignorance about the surroundings. This study examines electromyography (EMG) signals to predict intention of a driver along perception building stack of an autonomous driving system (ADS) in building an advanced driving assistant system (ADAS). EMG are classified into left-turn and right-turn intended actions and lanes and object detection with camera and Lidar are used to detect vehicles approaching from behind. A warning issued before the action onset, can alert a driver and may save her from a fatal accident. The use of neural signals for intended action prediction is a novel addition to camera, radar and Lidar based ADAS systems. Furthermore, the study demonstrates efficacy of the proposed idea with experiments designed to classify online and offline EMG data in real-world settings with computation time and the latency of communicated warnings.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Humanos , Femenino , Accidentes de Tránsito/prevención & control , Equipos de Seguridad , Reflejo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA