Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
AoB Plants ; 10(5): ply049, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30254729

RESUMEN

[This corrects the article DOI: 10.1093/aobpla/plx013.][This corrects the article DOI: 10.1093/aobpla/plx013.].

2.
AoB Plants ; 9(2): 013, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28533896

RESUMEN

Selective pressures acting on plant life histories can drive extreme specialization. One example of such specialization is the evolution of dioecious breeding systems. Evolutionary and ecological theory posits that dioecy may subject male and female individuals to different selective pressures and result in unique sex-mediated adaptive traits related to resource allocation and ecophysiology. Cycads are the earliest diverging lineage of seed plants with strict dioecy, yet we know almost nothing about the ecology and physiology of this group. Especially limited is our understanding of potential sex-specific differences and how such differences may influence species ecology. Here we examine the ecophysiology of male and female cycads to understand better, the role that dioecy plays in this group. We evaluated sex-specific differences in ecophysiological traits and resource acquisition in five species. Specifically, we compared photosynthetic physiology, nitrogen and carbon content, isotope discrimination (δ15N and δ13C), and stomatal density. In some cycads, (i) males and females have similar investments in leaf nitrogen but females exhibit greater incorporation of nitrogen from nitrogen-fixing soil bacteria, (ii) males display higher photosynthetic capacity but females show decreased [corrected] water-use efficiency, and (iii) males have higher stomatal conductance but similar stomatal density to females. This study is the first to examine the ecophysiological differences that have evolved in the oldest dioecious lineage of seed-bearing plants. Our results show unexpected differences in photosynthetic physiology and highlight the co-evolution with nitrogen fixing soil bacteria as a potential new key player in an old lineage.

3.
AoB Plants ; 2011: plr022, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22476492

RESUMEN

BACKGROUND AND AIMS: The basic set of adaptations necessary for salinity tolerance in vascular plants remains unknown. Although much has been published on salinity stress, almost all studies deal with spermatophytes. Studies of salinity tolerance in pteridophytes are relatively rare but hold promise for revealing the fundamental adaptations that all salt-tolerant vascular plants may share. The most basal pteridophytes to exhibit salinity tolerance are members of the genus Equisetum, including the giant horsetail, Equisetum giganteum, the only pteridophyte to occur in salinity-affected regions of the Atacama Desert valleys of northern Chile. Here it can constitute a significant vegetation component, forming dense stands of shoots >4 m high. METHODOLOGY: Physiological parameters (stomatal conductances; efficiency of photosystem II; sap osmotic potential) were measured in E. giganteum populations in northern Chile across a range of groundwater salinities at 11 sites. In addition, Na, K, electrical conductivity and total plant water potential were measured in the plants and groundwater from each site. PRINCIPAL RESULTS: Equisetum giganteum exhibits similar stomatal conductances and photochemical efficiencies of photosystem II across a wide range of groundwater salinities. It lowers cell sap osmotic potential with increasing salinity and produces positive root pressure, as evidenced by guttation, at the full range of salinities experienced in the Atacama Desert. Equisetum giganteum maintains low Na concentrations in its xylem fluid and cell sap when soil water Na is high. It also maintains high K/Na ratios in xylem fluid and cell sap when soil water has low K/Na ratios. CONCLUSIONS: Equisetum giganteum is well adapted to salinity stress. Efficient K uptake and Na exclusion are important adaptations and closely similar to those of the facultative halophyte fern Acrostichum aureum.

4.
Ann Bot ; 102(4): 591-8, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18669575

RESUMEN

BACKGROUND AND AIMS: Consistent abiotic factors can affect directional selection; cyclones are abiotic phenomena with near-discrete geographic limits. The current study investigates selective pressure of cyclones on plants at the species level, testing for possible natural selection. METHODS: New World Arecaceae (palms) are used as a model system, as plants with monopodial, unbranched arborescent form are most directly affected by the selective pressure of wind load. Living specimens of known provenance grown at a common site were affected by the same cyclone. Data on percentage mortality were compiled and analysed in biogeographic and phylogenetic contexts. KEY RESULTS: Palms of cyclone-prone provenance exhibited a much lower (one order of magnitude) range in cyclone tolerance, and significantly lower (P < 0.001) mean percentage mortality than collections from cyclone-free areas. Palms of cyclone-free provenance had much greater variation in tolerance, and significantly greater mean percentage mortality. A test for serial independence recovered no significant phylogenetic autocorrelation of percentage mortality. CONCLUSIONS: Variation in cyclone tolerance in New World Arecaceae correlates with biogeography, and is not confounded with phylogeny. These results suggest natural selection of cyclone tolerance in cyclone-prone areas.


Asunto(s)
Arecaceae/genética , Desastres , Variación Genética , Selección Genética , Arecaceae/crecimiento & desarrollo , Florida , Geografía , Filogenia
5.
J Ethnopharmacol ; 116(3): 422-30, 2008 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-18243613

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Botanical pharmacopoeias are non-random subsets of floras, with some taxonomic groups over- or under-represented. Moerman [Moerman, D.E., 1979. Symbols and selectivity: a statistical analysis of Native American medical ethnobotany, Journal of Ethnopharmacology 1, 111-119] introduced linear regression/residual analysis to examine these patterns. However, regression, the commonly-employed analysis, suffers from several statistical flaws. AIM OF THE STUDY: We use contingency table and binomial analyses to examine patterns of Shuar medicinal plant use (from Amazonian Ecuador). MATERIALS AND METHODS: We first analyzed the Shuar data using Moerman's approach, modified to better meet requirements of linear regression analysis. Second, we assessed the exact randomization contingency table test for goodness of fit. Third, we developed a binomial model to test for non-random selection of plants in individual families. RESULTS: Modified regression models (which accommodated assumptions of linear regression) reduced R(2) to from 0.59 to 0.38, but did not eliminate all problems associated with regression analyses. Contingency table analyses revealed that the entire flora departs from the null model of equal proportions of medicinal plants in all families. In the binomial analysis, only 10 angiosperm families (of 115) differed significantly from the null model. These 10 families are largely responsible for patterns seen at higher taxonomic levels. CONCLUSIONS: Contingency table and binomial analyses offer an easy and statistically valid alternative to the regression approach.


Asunto(s)
Etnofarmacología/estadística & datos numéricos , Medicina de Hierbas , Medicina Tradicional , Plantas Medicinales , Ecuador , Medicina de Hierbas/estadística & datos numéricos , Humanos , Modelos Lineales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA