Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 536
Filtrar
1.
Sci Total Environ ; : 176226, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270862

RESUMEN

Triplet-state dissolved organic matter (3DOM⁎) plays a critical role in the photodegradation of organic pollutants in aquatic environments. This review offers a comprehensive overview of 3DOM⁎, focusing on monitoring methods using various probes, formation mechanisms, and photoreactivity. Traditional probes, such as 2,4,6-trimethylphenol (TMP) and sorbic acid, are widely used, while novel probes promise improved accuracy and sensitivity. The E2:E3 ratio emerges as a promising indicator for 3DOM⁎ due to its simplicity and correlation with photoreactivity, though further validation is needed to confirm its broader applicability. This review highlights the higher photoreactivity of DOM with low molecular weight, low aromaticity, and autochthonous sources, although DOM with contrasting features can also show significant photoreactivity. The presence of inorganic ions and nanomaterials significantly influences 3DOM⁎'s degradation capacity, demonstrating complex interactions with surrounding species. Additionally, the review underscores the importance of various environmental factors, including light source and DOM concentration, in affecting the photodegradation rates of contaminants. Recent literature suggests that future research should focus on developing new probes to capture different aspects of 3DOM⁎, exploring the synergistic effects of plastic leachate, and investigating the role of co-existing ions and nanomaterials on 3DOM⁎ activity. Employing machine learning (ML) techniques to predict 3DOM⁎-related parameters from easily measurable DOM descriptors presents an exciting research avenue. Enhanced understanding of 3DOM⁎ can lead to more effective strategies in wastewater treatment and environmental remediation.

2.
Water Res ; 266: 122395, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39255567

RESUMEN

Dewatering is an indispensable link in sludge treatment, but its effect on the microplastics (MPs) remains inadequately understood. This study investigated the physicochemical changes and leaching behavior of MPs during the mechanical dewatering of sludge, as well as the impact of MP leachates on activated sludge (AS). After sludge dewatering, MPs exhibit rougher surfaces, decreased sizes and altered functional groups due to the addition of dewatering agents and the application of mechanical force. Meanwhile, plastic additives, depolymerization products, and derivatives of their interactions are leached from MPs during sludge dewatering process. The concentration of MP-based leachates in sludge is 2-25 times higher than that in water. The enhancement of pH and ionic strength caused by dewatering agents induces the release of MP leachates enriched with protein-like, fulvic acid-like, and soluble microbial by-product-like substances. The reflux of MP leachates in sludge dewatering liquor to the wastewater treatment system negatively impacts AS, leading to a decrease in COD removal rate and inhibition of the extracellular polymeric substances secretion. More importantly, MP leachates cause oxidative stress to microbial cells and alter the microbial community structure of AS at the phylum and genus levels. These findings confirm that MPs undergo aging and leaching during sludge dewatering process, and MP leachates may negatively affect the wastewater treatment system.

3.
Korean J Intern Med ; 39(5): 855-864, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39252490

RESUMEN

BACKGROUND/AIMS: To compare the effects of abatacept and conventional synthetic disease modifying anti-rheumatic drugs (csDMARDs) on the progression and development of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). METHODS: This multi-center retrospective study included RA patients receiving abatacept or csDMARDs who underwent at least two pulmonary function tests and/or chest high-resolution computed tomography (HRCT). We compared the following outcomes between the groups: progression of RA-ILD, development of new ILD in RA patients without ILD at baseline, 28-joint Disease Activity Score with the erythrocyte sedimentation rate (DAS28-ESR), and safety. Longitudinal changes were compared between the groups by using a generalized estimating equation. RESULTS: The study included 123 patients who were treated with abatacept (n = 59) or csDMARDs (n = 64). Nineteen (32.2%) and 38 (59.4%) patients treated with abatacept and csDMARDs, respectively, presented with RA-ILD at baseline. Newly developed ILD occurred in one patient receiving triple csDMARDs for 32 months. Among patients with RA-ILD at baseline, ILD progressed in 21.1% of cases treated with abatacept and 34.2% of cases treated with csDMARDs during a median 21-month follow-up. Longitudinal changes in forced vital capacity and diffusing capacity for carbon monoxide were comparable between the two groups. However, the abatacept group showed a more significant decrease in DAS28-ESR and glucocorticoid doses than csDMARDs group during the follow-up. The safety of both regimens was comparable. CONCLUSION: Abatacept and csDMARDs showed comparable effects on the development and stabilization of RA-ILD. Nevertheless, compared to csDMARDs, abatacept demonstrated a significant improvement in disease activity and led to reduced glucocorticoid use.


Asunto(s)
Abatacept , Antirreumáticos , Artritis Reumatoide , Enfermedades Pulmonares Intersticiales , Humanos , Abatacept/uso terapéutico , Abatacept/efectos adversos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/complicaciones , Femenino , Persona de Mediana Edad , Masculino , Estudios Retrospectivos , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/etiología , Enfermedades Pulmonares Intersticiales/fisiopatología , Enfermedades Pulmonares Intersticiales/diagnóstico , Antirreumáticos/uso terapéutico , Antirreumáticos/efectos adversos , Anciano , Resultado del Tratamiento , Progresión de la Enfermedad , Factores de Tiempo , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Pulmón/diagnóstico por imagen , Factores de Riesgo , Adulto , República de Corea , Tomografía Computarizada por Rayos X
5.
Sci Total Environ ; 943: 173743, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848906

RESUMEN

This study utilizes machine learning (ML) algorithms to develop a robust total organic carbon (TOC) prediction model for river waters in the Geumho River sub-basins, South Korea, considering both non-rain and rain events. The model incorporates geospatial parameters such as land use, slope, flow rate, and basic water quality metrics including biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and suspended solids (SS). A key aspect of this research is examining how land use information enhances the model's predictive accuracy. We compared two ML algorithms-extreme gradient boosting (XGBoost) and deep neural networks (DNN)-with a traditional multiple linear regression (MLR) approach. XGBoost outperformed the others, achieving an R2 value between 0.61 and 0.68 in the test dataset and demonstrating significant improvement during rain events with an R2 of 0.77 when including land use data. In contrast, this enhancement was not observed with the MLR model. Feature importance analysis using Shapley values highlighted COD as the primary predictor for non-rain events, while during rain events, COD, TP, TN, SS and agricultural land collectively influenced TOC levels. This study significantly advances understanding of TOC variability across different land use scenarios in river systems and underscores the importance of integrating geospatial and water quality parameters to enhance TOC prediction, particularly during rain events. This methodology provides a valuable framework for developing river management strategies and monitoring long-term TOC trends, especially in scenarios with gaps in essential monitoring data.

6.
Curr Eye Res ; 49(9): 914-922, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38813807

RESUMEN

PURPOSE: This study compared the anti-pseudomonal effects between nephrite-impregnated contact lenses (CLs) and conventional and cosmetic CLs. METHODS: After inoculation with Pseudomonas aeruginosa (P.aeruginosa), we counted the number of bacteria on the CL surface and observed each surface using atomic force microscopy (AFM) and scanning electron microscopy (SEM). To estimate potential harm of nephrite-impregnated CLs, we conducted a safety test using a rabbit model, treated with all CL types. RESULTS: Both conventional and cosmetic CLs (n = 258 ± 2.9 × 104, 368 ± 2.2 × 104) showed significantly decreased number of attached bacteria when compared with those without nephrite impregnation (n = 134 ± 0.8 × 104, 238 ± 2.5 × 104, p < 0.0001, respectively). AFM and SEM revealed that P. aeruginosa was less attached to the nephrite-impregnated CLs than to the conventional and cosmetic CLs, although those with nephrite impregnation had rougher surface. In the safety test, there were no significant differences in the findings between four groups, and the clarity and stability of all corneas were preserved. CONCLUSIONS: Nephrite may be used as a next-generation substance to reduce infectious keratitis caused by P. aeruginosa when added to CLs.


Asunto(s)
Microscopía Electrónica de Rastreo , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Conejos , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/prevención & control , Microscopía de Fuerza Atómica , Infecciones Bacterianas del Ojo/microbiología , Infecciones Bacterianas del Ojo/prevención & control , Lentes de Contacto Hidrofílicos/microbiología , Modelos Animales de Enfermedad , Soluciones para Lentes de Contacto/farmacología , Lentes de Contacto/microbiología
7.
Mar Pollut Bull ; 202: 116307, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564820

RESUMEN

This study utilizes ultraviolet and fluorescence spectroscopic indices of dissolved organic matter (DOM) from sediments, combined with machine learning (ML) models, to develop an optimized predictive model for estimating sediment total organic carbon (TOC) and identifying adjacent land-use types in coastal sediments from the Yellow and Bohai Seas. Our results indicate that ML models surpass traditional regression techniques in estimating TOC and classifying land-use types. Penalized Least Squares Regression (PLR) and Cubist models show exceptional TOC estimation capabilities, with PLR exhibiting the lowest training error and Cubist achieving a correlation coefficient 0.79. In land-use classification, Support Vector Machines achieved 85.6 % accuracy in training and 92.2 % in testing. Maximum fluorescence intensity and ultraviolet absorbance at 254 nm were crucial factors influencing TOC variations in coastal sediments. This study underscores the efficacy of ML models utilizing DOM optical indices for near real-time estimation of marine sediment TOC and land-use classification.


Asunto(s)
Carbono , Monitoreo del Ambiente , Sedimentos Geológicos , Aprendizaje Automático , Sedimentos Geológicos/química , Carbono/análisis , Monitoreo del Ambiente/métodos
8.
Chemosphere ; 356: 141972, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608780

RESUMEN

Metal-organic frameworks (MOFs) have emerged as a key focus in water treatment and monitoring due to their unique structural features, including extensive surface area, customizable porosity, reversible adsorption, and high catalytic efficiency. While numerous reviews have discussed MOFs in environmental remediation, this review specifically addresses recent advancements in modifying MOFs to enhance their effectiveness in water purification and monitoring. It underscores their roles as adsorbents, photocatalysts, and in luminescent and electrochemical sensing. Advancements such as pore modification, defect engineering, and functionalization, combined synergistically with advanced materials, have led to the development of recyclable MOF-based nano-adsorbents, Z-scheme photocatalytic systems, nanocomposites, and hybrid materials. These innovations have broadened the spectrum of removable contaminants and improved material recyclability. Additionally, this review delves into the creation of multifunctional MOF materials, the development of robust MOF variants, and the simplification of synthesis methods, marking significant progress in MOF sensor technology. Furthermore, the review addresses current challenges in this field and proposes potential future research directions and practical applications. The growing research interest in MOFs underscores the need for an updated synthesis of knowledge in this area, focusing on both current challenges and future opportunities in water remediation.


Asunto(s)
Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Purificación del Agua , Estructuras Metalorgánicas/química , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Adsorción , Restauración y Remediación Ambiental/métodos , Catálisis , Nanocompuestos/química
9.
J Rheum Dis ; 31(2): 86-96, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38559796

RESUMEN

Objective: The objective of this prospective, observational multicenter study (NCT03264703) was to compare the effectiveness of single conventional disease-modifying anti-rheumatic drug (cDMARD) plus anti-tumor necrosis factor (TNF) therapy versus multiple cDMARD treatments in patients with moderate-to-severe rheumatoid arthritis (RA) following cDMARD failure in the real-world setting in South Korea. Methods: At the treating physicians' discretion, patients received single cDMARD plus anti-TNF therapy or multiple cDMARDs. Changes from baseline in disease activity score 28-joint count with erythrocyte sedimentation rate (DAS28-ESR), corticosteroid use, and Korean Health Assessment Questionnaire (KHAQ-20) scores were evaluated at 3, 6, and 12 months. Results: Of 207 enrollees, the final analysis included 45 of 73 cDMARD plus anti-TNF and 91 of 134 multiple-cDMARD recipients. There were no significant between-group differences (BGDs) in ANCOVA-adjusted changes from baseline in DAS28-ESR at 3, 6 (primary endpoint), and 12 months (BGDs -0.18, -0.38, and -0.03, respectively). More cDMARD plus anti-TNF than multiple-cDMARD recipients achieved a >50% reduction from baseline in corticosteroid dosage at 12 months (35.7% vs 14.6%; p=0.007). Changes from baseline in KHAQ-20 scores at 3, 6, and 12 months were significantly better with cDMARD plus anti-TNF therapy than with multiple cDMARDs (BGD -0.18, -0.19, and -0.19 points, respectively; all p≤0.024). Conclusion: In the real-world setting, relative to multiple cDMARDs, single cDMARD plus anti-TNF therapy significantly improved quality-of-life scores and reduced corticosteroid use, with no significant BGD in disease activity, in RA patients in whom previous cDMARD therapy had failed.

10.
Chemosphere ; 355: 141826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38552805

RESUMEN

Recent studies have increasingly focused on the occurrence of plastic leachate and its impacts on aquatic ecosystems. Nonetheless, the environmental fate of this leachate in the presence of abundant natural organic matter (NOM)-a typical scenario in environments contaminated with plastics-remains underexplored. This study investigates the photo-induced leaching behaviors of dissolved organic matter (DOM) from terrestrial-sourced particles (forest soil and leaf litter) and microplastics (MPs), specifically polystyrene (PS) and polyvinyl chloride (PVC), over a two-week period. We also examined the biodegradability and spectroscopic characteristics of the leached DOM from both sources. Our results reveal that DOM from microplastics (MP-DOM) demonstrates more persistent leaching behavior compared to terrestrial-derived DOM, even with lesser quantities per unit of organic carbon. UV irradiation was found to enhance DOM leaching across all particle types. However, the photo-induced leaching behaviors of fluorescent components varied with the particle type. The MP group exhibited a broader range and higher biodegradability (ranging from 19.7% to 61.6%) compared to the terrestrial-sourced particles (ranging from 3.7% to 16.5%). DOM leached under UV irradiation consistently showed higher biodegradability than that under dark conditions. Furthermore, several fluorescence characteristics of DOM, such as the protein/phenol-like component (%C2), terrestrial humic-like component (%C3), and humification index (HIX)-traditionally used to indicate the biodegradability of natural organic matter-were also effective in assessing MP-DOM (with correlation coefficients R2 = 0.6055 (p = 0.003), R2 = 0.5389 (p = 0.007), and R2 = 0.4640 (p = 0.015), respectively). This study provides new insights into the potential differences in environmental fate between MP-DOM and NOM in aquatic environments heavily contaminated with MPs.


Asunto(s)
Microplásticos , Plásticos , Materia Orgánica Disuelta , Ecosistema , Suelo/química , Sustancias Húmicas/análisis , Espectrometría de Fluorescencia/métodos
11.
Environ Pollut ; 348: 123809, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38493869

RESUMEN

Numerous studies have focused on the interaction between microplastics (MPs) and phenanthrene (PHE) in aquatic environments. However, the intricate roles of aquatic humic substances (HS), which vary with environmental conditions, in influencing PHE-MP interactions are not yet fully understood. This study investigates the variable and environmentally sensitive roles of HS in modifying the interactions between PHE and polyethylene (PE) MPs under laboratory-simulated aquatic conditions with varying solution chemistry, including pH, HS types, HS concentrations, and ionic strength. Our findings show that the presence of HS significantly reduces the adsorption of PHE onto both pristine and aged PE MPs, with a more pronounced reduction observed in aged PEs. This effect is highlighted by a notable decrease in the partitioning coefficient (Kd) of PHE, which falls from 2.60 × 104 to 1.30 × 104 L/kg on MPs in the presence of HS. The study also demonstrates that alterations in the net charge of HS solutions are crucial in modifying PHE distribution onto PEs. An initial decrease in Kd values at higher pH levels is reversed when HS is introduced. Furthermore, an increase in HS concentrations is associated with lower Kd values. In conditions of higher ionic strength, the retention of PHE by HS is intensified, likely due to an enhanced salting-out effect. This research highlights the significant role of aquatic HS in modulating the distribution of PHE in MP-polluted waters, which is highly influenced by various solution chemistry factors. The findings are vital for understanding the fate of PHE in MP-contaminated aquatic environments and can contribute to refining predictive models that consider diverse solution chemistry scenarios.


Asunto(s)
Fenantrenos , Contaminantes Químicos del Agua , Microplásticos , Sustancias Húmicas/análisis , Plásticos/química , Fenantrenos/análisis , Polietileno , Contaminantes Químicos del Agua/análisis , Adsorción
12.
Chemosphere ; 353: 141647, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460843

RESUMEN

Humification offers a promising avenue for sequestering dissolved organic carbon while facilitating environmental cleanup. In this study, CuMgFe layered double oxides (LDO) were applied as a catalyst to replace conventional enzymes, such as laccase, thereby enhancing the in vitro polyphenol-Maillard humification reaction. CuMgFe LDO was synthesized through calcination of CuMgFe layered double hydroxides (LDH) at 500 °C for 5 h. A suite of characterization methods confirmed the successful formation into mixed oxides (Cu2O, CuO, MgO, FeO, and Fe2O3) after thermal treatment. A rapid humification reaction was observed with CuMgFe LDO, occurring within a two-week span, likely due to a distinct synergy between copper and iron elements. Subsequent analyses identified that MgO in CuMgFe LDO also played a pivotal role in humification by stabilizing the pH of the reaction. In the absence of magnesium, LDO's humification activity was more pronounced in the early stages of the reaction, but it rapidly diminished as the reaction progressed. The efficiency of CuMgFe LDO was heightened at elevated temperatures (35 °C), while light conditions manifested a discernible effect, with a modest decrease in humification efficacy under indoor light exposure. CuMgFe LDO surpassed both laccase and MgFe LDH in performance, boasting a superior humification efficiency relative to its precursor, CuMgFe LDH. The catalysts' humification activity was modulated by their crystallinity and valence dynamics. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) results suggested that introducing the amino acid, glycine, expedited the CuMgFe LDO-fueled humification, enhancing the formation of C-N and C-C bonds in the resultant products. The humic-like substances derived from the catalyst-enhanced reaction displayed an elevated presence of aromatic configurations and a richer array of oxygen functional groups in comparison to a typical commercial humic material.


Asunto(s)
Lacasa , Óxidos , Óxidos/química , Óxido de Magnesio , Sustancias Húmicas/análisis , Hidróxidos/química
13.
Sci Total Environ ; 922: 171338, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38428608

RESUMEN

Wastewater treatment plants (WWTPs) receive large quantities of microplastics (MPs) from raw wastewater, but many MPs are trapped in the sludge. Land application of sludge is a significant source of MP pollution. Existing reviews have summarized the analysis methods of MPs in sludge and the effect of MPs on sludge treatments. However, MP aging and mitigation during sludge treatment processes are not fully reviewed. Treatment processes used to remove water, pathogenic microorganisms, and other pollutants in sewage sludge also cause surface changes and degradation in the sludge MPs, affecting the potential risk of MPs. This study integrates MP abundance and distribution in sludge and their aging and mitigation characteristics during sludge treatment processes. The abundance, composition, and distribution of sludge MPs vary significantly with WWTPs. Furthermore, MPs exhibit variable degrees of aging, including rough surfaces, enhanced adsorption potentials for pollutants, and increased leaching behavior. Various sludge treatment processes further intensify these aging characteristics. Some sludge treatments, such as hydrothermal treatment, have efficiently removed MPs from sewage sludge. It is crucial to understand the potential risk of MP aging in sludge and the degradation properties of the MP-derived products from MP degradation in-depth and develop novel MP mitigation strategies in sludge, such as combining hydrothermal treatment and biological processes.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Aguas del Alcantarillado , Microplásticos , Plásticos , Aguas Residuales , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos
14.
Nanoscale Adv ; 6(3): 1023, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38298580

RESUMEN

[This corrects the article DOI: 10.1039/D3NA00649B.].

15.
Radiol Cardiothorac Imaging ; 6(1): e220229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38329404

RESUMEN

Purpose To investigate the feasibility and interscan variability of short-time cardiac MRI protocol after chemotherapy in individuals with breast cancer. Materials and Methods A total of 13 healthy female controls (mean age, 52.4 years ± 13.2 [SD]) and 85 female participants with breast cancer (mean age, 51.8 years ± 9.9) undergoing chemotherapy prospectively underwent routine breast MRI and short-time cardiac MRI using a 3-T scanner with peripheral pulse gating in the prone position. Interscan, intercoil, and interobserver reproducibility and variability of native T1 and extracellular volume (ECV), as well as ventricular functional parameters, were measured using the intraclass correlation coefficient (ICC), standard error of measurement (SEM), or coefficient of variation (CoV). Results Left ventricular functional parameters had excellent interscan reproducibility (ICC ≥ 0.80). Left ventricular ejection fraction showed low interscan variability in control and chemotherapy participants (SEM, 2.0 and 1.2; CoV, 3.1 and 1.9, respectively). Native T1 showed excellent interscan (ICC, 0.75) and intercoil (ICC, 0.81) reproducibility in the control group and good interscan reproducibility (ICC, 0.72 and 0.73, respectively) in the participants undergoing immediate and remote chemotherapy. Interscan reproducibility for ECV was excellent in the control group and in the remote chemotherapy group (ICC, 0.93 and 0.88, respectively) and fair in the immediate chemotherapy group (ICC, 0.52). In the regional analysis, interscan repeatability and variability of native T1 and ECV were superior in the anteroseptum or inferoseptum than in other segments in the immediate chemotherapy group. Native T1 and ECV had good to excellent interobserver agreement across all groups. Conclusion Short-time cardiac MRI showed excellent results for interscan, intercoil, and interobserver reproducibility and variability for ventricular functional or tissue characterization parameters, suggesting that this modality is feasible for routine surveillance of cardiotoxicity evaluation in individuals with breast cancer. Keywords: Cardiac MRI, Heart, Cardiomyopathy ClinicalTrials.gov registration no. NCT03301389 Supplemental material is available for this article. © RSNA, 2024.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Persona de Mediana Edad , Neoplasias de la Mama/diagnóstico por imagen , Cardiotoxicidad/diagnóstico por imagen , Estudios de Factibilidad , Imagen por Resonancia Magnética , Reproducibilidad de los Resultados , Volumen Sistólico , Función Ventricular Izquierda , Adulto , Anciano
16.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38285612

RESUMEN

AIM: This study aimed to develop a sensitive and specific recombinant antigen protein indirect enzyme-linked immunosorbent assay (ELISA) kit to detect the Shiga toxin (Stx)-producing Escherichia coli (STEC) antibodies against porcine edema disease (ED). METHODS AND RESULTS: The recombinant antigen was co-expressed with the STEC-derived Stx2e A2-fragment and Stx2e B protein in E. coli BL21(DE3) pLysS cells and purified using maltose-binding protein open columns. We used a Shiga-like toxin 2 antibody to test the specificity of the recombinant antigen in an indirect ELISA, which was detected in antigen-coated wells but not in uncoated wells. We tested the indirect ELISA system using samples from the STEC-immunized pig group, the commercial swine farm group, and healthy aborted fetal pleural effusion group; five and twenty samples, respectively, were positive for STEC in the former, whereas all three samples were negative for STEC in the latter. CONCLUSIONS: This newly developed indirect ELISA may be a specific method for diagnosing STEC infections in pigs.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Shiga-Toxigénica , Enfermedades de los Porcinos , Porcinos , Animales , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/veterinaria , Enfermedades de los Porcinos/diagnóstico , Ensayo de Inmunoadsorción Enzimática/veterinaria , Ensayo de Inmunoadsorción Enzimática/métodos , Edema
17.
Water Res ; 250: 121036, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134858

RESUMEN

Membrane fouling and high-strength membrane concentrate production are two limitations of membrane distillation (MD) for landfill leachate treatment. In this study, activated carbon- and biochar-based adsorption processes were integrated into a conventional MD system to overcome these limitations. The organic matter fractionations of the leachate were thoroughly investigated during the treatment. Membrane-reversible and irreversible foulants differed remarkably from the inlet leachate in the non-assisted MD system. Specifically, reversible foulants were characterized by a high abundance of humic-like fluorescent components, high-molecular-weight humic-size constituents, peptides, and unsaturated compounds. In contrast, irreversible foulants were enriched with fulvic-like fluorescent components, low-molecular-weight neutrals, unsaturated compounds, and polyphenols. The adsorption-based pre-treatment effectively removed foulant precursors from landfill leachate, with a relatively higher (20%) adsorption performance for specific biochar used in this study than for activated carbon. Compared with the non-assisted MD system, the biochar-assisted MD system showed improved performance, achieving 40% overall membrane flux recovery, 42% higher filtration fluxes, and 53% lower concentrate production. In addition, a 15% higher removal of irreversible foulants was observed as compared to the reversible foulants, which can potentially increase the membrane lifespan. This study demonstrates the effectiveness of an adsorption-assisted MD system supported by increased filtration, membrane fouling alleviation, and low-strength leachate concentrate generation.


Asunto(s)
Carbón Orgánico , Contaminantes Químicos del Agua , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis , Destilación
18.
Water Res ; 249: 120989, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101049

RESUMEN

Quantitatively identifying the primary sources of organic membrane fouling is essential for the effective implementation of membrane technology and optimal water resource management prior to the treatment. This study leveraged carbon stable isotope tracers to estimate the quantitative contributions of various organic sources to membrane fouling in an ultrafiltration system. Effluent organic matter (EfOM) and aquatic natural organic matter (NOM), two common sources, were combined in five different proportions to evaluate their mixed effects on flux decline and the consequent fouling behaviors. Generally, biopolymer (BP) and low molecular weight neutral (LMWN) size fractions - abundantly present in EfOM - were identified as significant contributors to reversible and irreversible fouling, respectively. Fluorescence spectroscopy disclosed that a protein-like component notably influenced overall membrane fouling, whereas humic-like components were predominantly responsible for irreversible fouling rather than reversible fouling. Fluorescence index (FI) and biological index (BIX), common fluorescence source tracers, showed promise in determining the source contribution for reversible foulants. However, these optical indices were insufficient in accurately determining individual source contributions to irreversible fouling, resulting in inconsistencies with the observed hydraulic analysis. Conversely, applying a carbon stable isotope-based mixing model yielded reasonable estimates for all membrane fouling. The contribution of EfOM surpassed 60 % for reversible fouling and increased with its content in DOM source mixtures. In contrast, aquatic NOM dominated irreversible fouling, contributing over 85 %, regardless of the source mixing ratios. This study emphasizes the potential of stable isotope techniques in accurately estimating the contributions of different organic matter sources to both reversible and irreversible membrane fouling.


Asunto(s)
Membranas Artificiales , Ultrafiltración , Ultrafiltración/métodos , Carbono , Isótopos de Carbono , Espectrometría de Fluorescencia
19.
Nanoscale Adv ; 6(1): 32-50, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38125597

RESUMEN

Medical food is consumed for the purpose of improving specific nutritional requirements or disease conditions, such as inflammation, diabetes, and cancer. It involves partial or exclusive feeding for fulfilling unique nutritional requirements of patients and is different from medicine, consisting of basic nutrients, such as polyphenols, vitamins, sugars, proteins, lipids, and other functional ingredients to nourish the patients. Recently, studies on extracellular vesicles (exosomes) with therapeutic and drug carrier potential have been actively conducted. In addition, there have been attempts to utilize exosomes as medical food components. Consequently, the application of exosomes is expanding in different fields with increasing research being conducted on their stability and safety. Herein, we introduced the current trends of medical food and the potential utilization of exosomes in them. Moreover, we proposed Medi-Exo, a exosome-based medical food. Furthermore, we comprehensively elucidate various disease aspects between medical food-derived exosomes (Medi-Exo) and therapeutic natural bionanocomposites. This review highlights the therapeutic challenges regarding Medi-Exo and its potential health benefits.

20.
J Environ Manage ; 345: 118895, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37659370

RESUMEN

Over the past decade, there has been a substantial increase in research investigating the potential of graphitic carbon nitride (g-C3N4) for various environmental remediations. Renowned for its photocatalytic activity under visible light, g-C3N4 offers a promising solution for treating water pollutants. However, traditional g-C3N4-based photocatalysts have inherent drawbacks, creating a disparity between laboratory efficacy and real-world applications. A primary practical challenge is their fine-powdered form, which hinders separation and recycling processes. A promising approach to address these challenges involves integrating magnetic or floating materials into conventional photocatalysts, a strategy gaining traction within the g-C3N4-based photocatalyst arena. Another emerging solution to enhance practical applications entails merging experimental results with contemporary computational methods. This synergy seeks to optimize the synthesis of more efficient photocatalysts and pinpoint optimal conditions for pollutant removal. While numerous review articles discuss the laboratory-based photocatalytic applications of g-C3N4-based materials, there is a conspicuous absence of comprehensive coverage regarding state-of-the-art research on improved g-C3N4-based photocatalysts for practical applications. This review fills this void, spotlighting three pivotal domains: magnetic g-C3N4 photocatalysts, floating g-C3N4 photocatalysts, and the application of machine learning to g-C3N4 photocatalysis. Accompanied by a thorough analysis, this review also provides perspectives on future directions to enhance the efficacy of g-C3N4-based photocatalysts in water purification.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Luz , Aprendizaje Automático , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA