Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plant Foods Hum Nutr ; 78(1): 52-60, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36301415

RESUMEN

Green banana fruit with high resistant starch (RS) content has a potential to be a nutraceutical ingredient despite having an unpleasant astringency taste and is yet to be fully explored. In this study, the green banana after de-astringency treatment was employed for flour production, and the resulting flour was subjected to modification by the combined treatments of pullulanase debranching and annealing. The banana flour (BF) and the modified flour (MF) were compared with each other by evaluating their functional, thermal and structural properties. The BF showed a restricted-swelling pasting profile, behaving like a slightly chemically cross-linked starch; the MF exhibited less pronounced changes in pasting behavior with increased solubility and decreased swelling power and dispersed volume fraction at elevated temperatures. As compared with the BF, an enhanced thermal stability of the MF was observed, reflected in the endotherm shifting to higher temperatures with increased enthalpy. The BF displayed a CA-type polymorph, while the MF comprised a mixture of B- and V-type polymorphs with increased crystallinity. The MF showed an increased molecular order, reflected in an increase in short-range double helical order detected in the starch fingerprint regions of FT-IR spectra, and along with increased crystallinity, underlying its enhanced thermal stability. The modification treatment resulted in irregularly shaped flour particles with a more compact structure as revealed by morphological characters. The results of this study can provide useful information for the development of food products using the modified green banana flour with improved thermal stability and functional properties as a health-promoting ingredient.


Asunto(s)
Harina , Musa , Harina/análisis , Musa/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Solubilidad
2.
Sci Rep ; 12(1): 16960, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216864

RESUMEN

Quantum two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices, such as superconducting qubits. Although the low-temperature physics of these TLSs is usually well-explained by a phenomenological standard tunneling model of independent TLSs, the nature of these TLSs, as well as their behavior out of equilibrium and at high energies above 1 K, remain inconclusive. Here we measure the non-equilibrium dielectric loss of TLSs in amorphous silicon using a superconducting resonator, where energies of TLSs are varied in time using a swept electric field. Our results show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons, where the latter also possesses anomalously large electric dipole moment. These results may shed new light on the low temperature characteristics of amorphous solids, and hold implications to experiments and applications in quantum devices using time-varying electric fields.

3.
Phys Rev Lett ; 120(18): 183602, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29775362

RESUMEN

Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA