Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 324: 111432, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36029895

RESUMEN

Abscisic acid (ABA) regulates seed dormancy and therefore preharvest sprouting (PHS) in wheat. This study investigated the contribution of transcriptional regulation of ABA metabolism and signaling genes to genetic variation in dormancy of wheat seeds. Our results showed that genetic variation in seed dormancy is highly correlated with ABA content (r > 0.86), which, in turn, was closely associated with the expression levels of ABA biosynthesis genes, TaNCED1 (r = 0.78) and TaNCED2 (r = 0.67). A relatively lower correlation was observed between ABA content and the expression levels of ABA catabolism genes, TaCYP707A1 (r = 0.51) and TaCYP707A2 (r = 0.57). The expression level of TaABI5 exhibited strong associations with the levels of ABA (r = 0.8) and seed dormancy (r > 0.9), indicating the importance of seed ABA sensitivity in mediating genetic variation in dormancy. Furthermore, high positive correlations were prevalent between the expression patterns of TaABI5 and TaNCED1 (r = 0.91) or TaNCED2 (r = 0.82). Overall, our results implicated the significance of TaNCEDs and TaABI5 in regulating genetic variation in ABA level and sensitivity and thereby seed dormancy, highlighting the potential use of these genes to develop molecular markers for incorporating PHS resistance in wheat.


Asunto(s)
Latencia en las Plantas , Triticum , Ácido Abscísico/metabolismo , Regulación de la Expresión Génica de las Plantas , Variación Genética , Germinación/genética , Latencia en las Plantas/genética , Semillas/metabolismo , Triticum/metabolismo
2.
PLoS One ; 13(1): e0190681, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29357369

RESUMEN

Kernel morphology characteristics of wheat are complex and quantitatively inherited. A doubled haploid (DH) population of the cross RL4452/'AC Domain' was used to study the genetic basis of seed shape. Quantitative trait loci (QTL) analyses were conducted on a total of 18 traits: 14 grain shape traits, flour yield (Fyd), and three agronomic traits (Plant height [Plht], 1000 Grain weight [Gwt], Test weight [Twt]), using data from trial locations at Glenlea, Brandon, and Morden in Manitoba, Canada, between 1999 and 2004. Kernel shape was studied through digital image analysis with an Acurum® grain analyzer. Plht, Gwt, Twt, Fyd, and grain shape QTL were correlated with each other and QTL analysis revealed that QTL for these traits often mapped to the same genetic locations. The most significant QTL for the grain shape traits were located on chromosomes 4B and 4D, each accounting for up to 24.4% and 53.3% of the total phenotypic variation, respectively. In addition, the most significant QTL for Plht, Gwt, and Twt were all detected on chromosome 4D at the Rht-D1 locus. Rht-D1b decreased Plht, Gwt, Twt, and kernel width relative to the Rht-D1a allele. A narrow genetic interval on chromosome 4B contained significant QTL for grain shape, Gwt, and Plht. The 'AC Domain' allele reduced Plht, Gwt, kernel length and width traits, but had no detectable effect on Twt. The data indicated that this variation was inconsistent with segregation at Rht-B1. Numerous QTL were identified that control these traits in this population.


Asunto(s)
Cruzamientos Genéticos , Grano Comestible/genética , Desarrollo de la Planta , Triticum/genética , Cromosomas de las Plantas , Genes de Plantas , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
3.
BMC Plant Biol ; 17(1): 45, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202046

RESUMEN

BACKGROUND: Lr16 is a widely deployed leaf rust resistance gene in wheat (Triticum aestivum L.) that is highly effective against the North American Puccinia triticina population when pyramided with the gene Lr34. Lr16 is a seedling leaf rust resistance gene conditioning an incompatible interaction with a distinct necrotic ring surrounding the uredinium. Lr16 was previously mapped to the telomeric region of the short arm of wheat chromosome 2B. The goals of this study were to develop numerous single nucleotide polymorphism (SNP) markers for the Lr16 region and identify diagnostic gene-specific SNP marker assays for marker-assisted selection (MAS). RESULTS: Forty-three SNP markers were developed and mapped on chromosome 2BS tightly linked with the resistance gene Lr16 across four mapping populations representing a total of 1528 gametes. Kompetitive Allele Specific PCR (KASP) assays were designed for all identified SNPs. Resistance gene analogs (RGAs) linked with the Lr16 locus were identified and RGA-based SNP markers were developed. The diagnostic potential of the SNPs co-segregating with Lr16 was evaluated in a diverse set of 133 cultivars and breeding lines. Six SNP markers were consistent with the Lr16 phenotype and are accurately predictive of Lr16 for all wheat lines/cultivars in the panel. CONCLUSIONS: Lr16 was mapped relative to SNP markers in four populations. Six SNP markers exhibited high quality clustering in the KASP assay and are suitable for MAS of Lr16 in wheat breeding programs.


Asunto(s)
Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Triticum/genética , Triticum/microbiología , Basidiomycota/patogenicidad , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Marcadores Genéticos , Haplotipos , Fenotipo , Enfermedades de las Plantas/microbiología , Plantones/genética , Plantones/microbiología
4.
BMC Plant Biol ; 14: 340, 2014 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-25432597

RESUMEN

BACKGROUND: Pre-harvest sprouting (PHS) of wheat grain leads to a reduction in grain yield and quality. The availability of markers for marker-assisted selection (MAS) of PHS resistance will serve to enhance breeding selection and advancement of lines for cultivar development. The aim of this study was to identify candidate regions and develop molecular markers for PHS resistance in wheat. This was achieved via high density mapping of single nucleotide polymorphism (SNP) markers from an Illumina 90 K Infinium Custom Beadchip in a doubled haploid (DH) population derived from a RL4452/'AC Domain' cross and subsequent detection of quantitative trait loci (QTL) for PHS related traits (falling number [FN], germination index [GI] and sprouting index [SI]). SNP marker sequences flanking QTL were used to locate colinear regions in Brachypodium and rice, and identify genic markers associated with PHS resistance that can be utilized for MAS in wheat. RESULTS: A linkage map spanning 2569.4 cM was constructed with a total of 12,201 SNP, simple sequence repeat (SSR), diversity arrays technology (DArT) and expressed sequence tag (EST) markers. QTL analyses using Multiple Interval Mapping (MIM) identified four QTL for PHS resistance traits on chromosomes 3B, 4A, 7B and 7D. Sequences of SNPs flanking these QTL were subject to a BLASTN search on the International Wheat Genome Sequencing Consortium (IWGSC) database (http://wheat-urgi.versailles.inra.fr/Seq-Repository). Best survey sequence hits were subject to a BLASTN search on Gramene (www.gramene.org) against both Brachypodium and rice databases, and candidate genes and regions for PHS resistance were identified. A total of 18 SNP flanking sequences on chromosomes 3B, 4A, 7B and 7D were converted to KASP markers and validated with matching genotype calls of Infinium SNP data. CONCLUSIONS: Our study identified candidate genes involved in abscissic acid (ABA) and gibberellin (GA) metabolism, and flowering time in four genomic regions of Brachypodium and rice respectively, in addition to 18 KASP markers for PHS resistance in wheat. These markers can be deployed in future genetic studies of PHS resistance and might also be useful in the evaluation of PHS in germplasm and breeding material.


Asunto(s)
Marcadores Genéticos , Germinación/genética , Proteínas de Plantas/genética , Triticum/fisiología , Brachypodium/genética , Brachypodium/fisiología , Mapeo Cromosómico , Etiquetas de Secuencia Expresada , Repeticiones de Microsatélite , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Selección Genética , Triticum/genética
5.
Theor Appl Genet ; 122(1): 143-9, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20725713

RESUMEN

Stem rust (caused by Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. & E. Henn.) has re-emerged as a threat to wheat production with the evolution of new pathogen races, namely TTKSK (Ug99) and its variants, in Africa. Deployment of resistant wheat cultivars has provided long-term control of stem rust. Identification of new resistance genes will contribute to future cultivars with broad resistance to stem rust. The related Canadian cultivars Peace and AC Cadillac show resistance to Ug99 at the seedling stage and in the field. The purpose of this study was to elucidate the inheritance and genetically map resistance to Ug99 in these two cultivars. Two populations were produced, an F(2:3) population from LMPG/AC Cadillac and a doubled haploid (DH) population from RL6071/Peace. Both populations showed segregation at the seedling stage for a single stem rust resistance (Sr) gene, temporarily named SrCad. SrCad was mapped to chromosome 6DS in both populations with microsatellite markers and a marker (FSD_RSA) that is tightly linked to the common bunt resistance gene Bt10. FSD_RSA was the closest marker to SrCad (≈ 1.6 cM). Evaluation of the RL6071/Peace DH population and a second DH population, AC Karma/87E03-S2B1, in Kenya showed that the combination of SrCad and leaf rust resistance gene Lr34 provided a high level of resistance to Ug99-type races in the field, whereas in the absence of Lr34 SrCad conferred moderate resistance. A survey confirmed that SrCad is the basis for all of the seedling resistance to Ug99 in Canadian wheat cultivars. While further study is needed to determine the relationship between SrCad and other Sr genes on chromosome 6DS, SrCad represents a valuable genetic resource for producing stem rust resistant wheat cultivars.


Asunto(s)
Basidiomycota/fisiología , Mapeo Cromosómico/métodos , Inmunidad Innata/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Plantones/genética , Triticum/genética , Canadá , Cruzamientos Genéticos , Genes de Plantas/genética , Marcadores Genéticos , Genotipo , Plantones/microbiología , Triticum/inmunología , Triticum/microbiología
6.
Theor Appl Genet ; 121(6): 1083-91, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20552325

RESUMEN

Adult plant resistance (APR) to leaf rust and stripe rust derived from the wheat (Triticum aestivum L.) line PI250413 was previously identified in RL6077 (=Thatcher*6/PI250413). The leaf rust resistance gene in RL6077 is phenotypically similar to Lr34 which is located on chromosome 7D. It was previously hypothesized that the gene in RL6077 could be Lr34 translocated to another chromosome. Hybrids between RL6077 and Thatcher and between RL6077 and 7DS and 7DL ditelocentric stocks were examined for first meiotic metaphase pairing. RL6077 formed chain quadrivalents and trivalents relative to Thatcher and Chinese Spring; however both 7D telocentrics paired only as heteromorphic bivalents and never with the multivalents. Thus, chromosome 7D is not involved in any translocation carried by RL6077. A genome-wide scan of SSR markers detected an introgression from chromosome 4D of PI250413 transferred to RL6077 through five cycles of backcrossing to Thatcher. Haplotype analysis of lines from crosses of Thatcher × RL6077 and RL6058 (Thatcher*6/PI58548) × RL6077 showed highly significant associations between introgressed markers (including SSR marker cfd71) and leaf rust resistance. In a separate RL6077-derived population, APR to stripe rust was also tightly linked with cfd71 on chromosome 4DL. An allele survey of linked SSR markers cfd71 and cfd23 on a set of 247 wheat lines from diverse origins indicated that these markers can be used to select for the donor segment in most wheat backgrounds. Comparison of RL6077 with Thatcher in field trials showed no effect of the APR gene on important agronomic or quality traits. Since no other known Lr genes exist on chromosome 4DL, the APR gene in RL6077 has been assigned the name Lr67.


Asunto(s)
Basidiomycota/genética , Cromosomas de las Plantas/genética , Genes de Plantas , Hojas de la Planta/genética , Triticum/genética , Alelos , Basidiomycota/inmunología , Marcadores Genéticos , Haplotipos , Hibridación Genética , Inmunidad Innata , Repeticiones de Minisatélite/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Plantas/genética , Plantas/inmunología , Triticum/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA