Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nematol ; 55(1): 20230051, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38026553

RESUMEN

Barley root-knot nematode, Meloidogyne naasi Franklin, 1965, is one of the most important pest nematodes infecting monocots (Franklin, 1965). Two-inch core soil samples collected from a golf course in Ada County, Idaho were submitted for identification in November of 2019. A high number of Meloidogyne sp. juveniles were recovered from both soil samples using sieving and decantation followed by the sugar centrifugal flotation method. They were examined by light microscopy, morphometric measurements, and multiple molecular markers, including the ribosomal 28S D2-D3 and intergenic spacer 2 (IGS-2) regions, mitochondrial markers cytochrome oxidase I (COI) and the interval from COII to 16S, and the protein-coding gene Hsp90. Morphometrics as well as BlastN comparisons with other root-knot nematode sequences from GenBank were consistent with identification as M. naasi. Phylogenetic trees inferred from 28S, IGS-2, COI, or Hsp90 alignments each separated the Idaho population into a strongly supported clade with other populations of M. naasi, while the COII-16S interval could not resolve M. naasi from M. minor. This report represents the first morphological and molecular characterization of Meloidogyne naasi from turfgrass in Idaho.

2.
J Nematol ; 55(1): 20230003, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36880011

RESUMEN

Specimens of a tylenchid nematode were recovered in 2019 from soil samples collected from a corn field, located in Pickens County, South Carolina, USA. A moderate number of Tylenchus sp. adults (females and males) were recovered. Extracted nematodes were examined morphologically and molecularly for species identification, which indicated that the specimens of the tylenchid adults were a new species, described herein as Tylenchus zeae n. sp. Morphological examination and the morphometric details of the specimens were very close to the original descriptions of Tylenchus sherianus and T. rex. However, females of the new species can be differentiated from these species by body shape and length, shape of excretory duct, distance between anterior end and esophageal intestinal valve, and a few other characteristics given in the diagnosis. Males of the new species can be differentiated from the two closely related species by tail, spicules, and gubernaculum length. Cryo-scanning electron microscopy confirmed head bearing five or six annules; four to six cephalic sensilla represented by small pits at the rounded corners of the labial plate; a small, round oral plate; and a large, pit-like amphidial opening confined to the labial plate and extending three to four annules beyond it. Phylogenetic analysis of 18S rRNA gene sequences placed Tylenchus zeae n. sp. in a clade with Tylenchus arcuatus and several Filenchus spp., and the mitochondrial cytochrome oxidase c subunit 1 (COI) gene region separated the new species from T. arcuatus and other tylenchid species. In the 28S tree, T. zeae n. sp. showed a high level of sequence divergence and was positioned outside of the main Tylenchus-Filenchus clade.

3.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-34881368

RESUMEN

A high number of second stage juveniles of the root-knot nematode were recovered from soil samples collected from a corn field, located in Pickens County, South Carolina, USA in 2019. Extracted nematodes were examined morphologically and molecularly for species identification which indicated that the specimens of root knot juveniles were Meloidogyne hispanica. The morphological examination and morphometric details from second-stage juveniles were consistent with the original description and redescriptions of this species. The ITS rRNA, D2-D3 expansion segments of 28S rRNA, intergenic COII-16S region, nad5 and COI gene sequences were obtained from the South Carolina population of M. hispanica. Phylogenetic analysis of the intergenic COII-16S region of mtDNA gene sequence alignment using statistical parsimony showed that the South Carolina population clustered with Meloidogyne hispanica from Portugal and Australia. To our best knowledge, this finding represents the first report of Meloidogyne hispanica in the USA and North America.

4.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-34761224

RESUMEN

Cactodera torreyanae Cid del Prado Vera & Subbotin, 2014 cysts were discovered during a Pale Potato Cyst Nematode (PCN) survey conducted by Minnesota Department of Agriculture as part of the Animal and Plant Health Inspection Service (APHIS) efforts to survey states for the presence of PCN. The soil samples were collected from a potato field, located in Karlstad, Kittson County, Minnesota, USA. Two out of 175 vials submitted for identification to the Mycology and Nematology Genetic Diversity and Biology Laboratory (MNGDBL) contained few cysts and juveniles of C. torreyanae. Cysts were dark brown in color, lemon-shaped to elongated with distinct vulval cone. Vulva with denticles present around fenestra, cyst length to width ratio between 1.6 and 2.3 and anus distinct. The juveniles had rounded stylet knobs, some sloping slightly posteriorly. The molecular analysis included sequence and phylogenetic analysis of ITS rRNA, D2-D3 expansion segments of 28S rRNA and COI of mtDNA genes. The nematode species was identified by both morphological and molecular means as Cactodera torreyanae. To the best of our knowledge this represents the first report of Cactodera torreyanae from the United States and first report of this cyst nematode species from potato fields. Definite host plant for this nematode remains unknown.

5.
J Nematol ; 532021.
Artículo en Inglés | MEDLINE | ID: mdl-33860260

RESUMEN

In 2019, Cactodera milleri cysts were discovered from soil samples collected from a Chenopodium quinoa field, located in Mosca, Alamosa county, Colorado, USA. Approximately 200 lemon shaped cysts and several hundred juveniles were recovered from the affected quinoa plants. The same species was also identified from several counties in Minnesota from samples submitted over the years by the Minnesota Department of Agriculture as part of the Animal and Plant Health Inspection Service (APHIS) efforts to survey states for the presence of Pale Potato Cyst Nematode. The cysts and juveniles (J2) were recovered from soil samples through sieving and Baermann funnel extraction. The nematode species was identified by both morphological and molecular means as Cactodera milleri (Graney and Bird, 1990). To our knowledge this represents the first report of Cactodera milleri from Colorado and Minnesota.

6.
J Nematol ; 52: 1-5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32628824

RESUMEN

Root-lesion nematodes (Pratylenchus spp.) are among the most important nematode pests on grapevine along with root-knot, dagger, and ring nematodes. In 2019, two samples of both soil and roots were collected from a vineyard in Delano, Kern County, California and submitted to the United States Department of Agriculture, ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD, for identification purposes. Females and juveniles of Pratylenchus sp. were recovered from the root and soil samples using the sugar centrifugal flotation and Baermann funnel extraction methods. Both morphological observations and molecular analysis of internal transcribed spacer (ITS), 28S large subunit ribosomal DNA, and mitochondrial cytochrome oxidase (COI) sequences indicated that the specimens recovered from the soil and roots were Pratylenchus hippeastri. To the best of the authors' knowledge, this is the first report of P. hippeastri from California including the first record of this species on grapevine and the second state record in North America. Damages caused by nematodes cannot be over-emphasized, although economic importance of P. hippeastri has never been established. Hence, there is an urgent need to investigate the economic impact of this nematode in vineyards in California State in order to develop sustainable management strategies.Root-lesion nematodes (Pratylenchus spp.) are among the most important nematode pests on grapevine along with root-knot, dagger, and ring nematodes. In 2019, two samples of both soil and roots were collected from a vineyard in Delano, Kern County, California and submitted to the United States Department of Agriculture, ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD, for identification purposes. Females and juveniles of Pratylenchus sp. were recovered from the root and soil samples using the sugar centrifugal flotation and Baermann funnel extraction methods. Both morphological observations and molecular analysis of internal transcribed spacer (ITS), 28S large subunit ribosomal DNA, and mitochondrial cytochrome oxidase (COI) sequences indicated that the specimens recovered from the soil and roots were Pratylenchus hippeastri. To the best of the authors' knowledge, this is the first report of P. hippeastri from California including the first record of this species on grapevine and the second state record in North America. Damages caused by nematodes cannot be over-emphasized, although economic importance of P. hippeastri has never been established. Hence, there is an urgent need to investigate the economic impact of this nematode in vineyards in California State in order to develop sustainable management strategies.

7.
J Nematol ; 52: 1-4, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32180381

RESUMEN

In the spring of 2019, a cyst nematode was discovered from soil samples collected from an alfalfa field in Millard County, Utah. The soil samples were submitted to one of us (SH), who extracted the nematode cysts and sent them to the USDA-ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory (MNGDBL), Beltsville, MD for morphological and molecular identification. Cysts and living nematode juveniles (J2) recovered from the cysts were examined morphologically and molecularly for species identification which indicated that the specimens were Heterodera medicaginis. This represents the first record of H. medicaginis in Utah and the second report of this nematode in North America.In the spring of 2019, a cyst nematode was discovered from soil samples collected from an alfalfa field in Millard County, Utah. The soil samples were submitted to one of us (SH), who extracted the nematode cysts and sent them to the USDA-ARS, Mycology and Nematology Genetic Diversity and Biology Laboratory (MNGDBL), Beltsville, MD for morphological and molecular identification. Cysts and living nematode juveniles (J2) recovered from the cysts were examined morphologically and molecularly for species identification which indicated that the specimens were Heterodera medicaginis. This represents the first record of H. medicaginis in Utah and the second report of this nematode in North America.

8.
J Nematol ; 51: 1-6, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31339253

RESUMEN

In April 2018, a cyst nematode was discovered from soil samples collected from a cactus garden collection in Meridian, Ada County, Idaho, USA. The cactus garden collection field reported was observed with localized areas of heavily stunted plants. Roots from affected plants displayed moderate numbers of nematode cysts. Living nematode juveniles (J2) recovered from the cysts were examined morphologically and molecularly for species identification which indicated that the specimens were Cactodera cacti. This is the first report of the cactus cyst nematode, C. cacti in Idaho.In April 2018, a cyst nematode was discovered from soil samples collected from a cactus garden collection in Meridian, Ada County, Idaho, USA. The cactus garden collection field reported was observed with localized areas of heavily stunted plants. Roots from affected plants displayed moderate numbers of nematode cysts. Living nematode juveniles (J2) recovered from the cysts were examined morphologically and molecularly for species identification which indicated that the specimens were Cactodera cacti. This is the first report of the cactus cyst nematode, C. cacti in Idaho.

9.
PLoS One ; 10(3): e0123157, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25822722

RESUMEN

Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp.) are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69) and susceptible (cv. Lahontan) alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with respect to resistance are discussed.


Asunto(s)
Medicago sativa/genética , Medicago sativa/parasitología , Raíces de Plantas/genética , Raíces de Plantas/parasitología , Transcriptoma/genética , Tylenchoidea/parasitología , Animales , Biología Computacional , Perfilación de la Expresión Génica/métodos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Infecciones por Secernentea/genética , Infecciones por Secernentea/parasitología
10.
PLoS One ; 10(2): e0118269, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25710378

RESUMEN

Nematodes are one of the major limiting factors in alfalfa production. Root-knot nematodes (RKN, Meloidogyne spp.) are widely distributed and economically important sedentary endoparasites of agricultural crops and they may inflict significant damage to alfalfa fields. As of today, no studies have been published on global gene expression profiling in alfalfa infected with RKN or any other plant parasitic nematode. Very little information is available about molecular mechanisms that contribute to pathogenesis and defense responses in alfalfa against these pests and specifically against RKN. In this work, we performed root transcriptome analysis of resistant (cv. Moapa 69) and susceptible (cv. Lahontan) alfalfa cultivars infected with RKN Meloidogyne incognita, widespread root-knot nematode species and a major pest worldwide. A total of 1,701,622,580 pair-end reads were generated on an Illumina Hi-Seq 2000 platform from the roots of both cultivars and assembled into 45,595 and 47,590 transcripts in cvs Moapa 69 and Lahontan, respectively. Bioinformatic analysis revealed a number of common and unique genes that were differentially expressed in susceptible and resistant lines as a result of nematode infection. Although the susceptible cultivar showed a more pronounced defense response to the infection, feeding sites were successfully established in its roots. Characteristically, basal gene expression levels under normal conditions differed between the two cultivars as well, which may confer advantage to one of the genotypes toward resistance to nematodes. Differentially expressed genes were subsequently assigned to known Gene Ontology categories to predict their functional roles and associated biological processes. Real-time PCR validated expression changes in genes arbitrarily selected for experimental confirmation. Candidate genes that contribute to protection against M. incognita in alfalfa were proposed and alfalfa-nematode interactions with respect to resistance are discussed.


Asunto(s)
Perfilación de la Expresión Génica , Medicago sativa/genética , Tylenchoidea/fisiología , Animales , Biología Computacional , Interacciones Huésped-Parásitos/genética , Medicago sativa/metabolismo , Medicago sativa/parasitología , Células Vegetales/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Raíces de Plantas/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Transcriptoma
11.
Plant Dis ; 97(11): 1424-1430, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30708461

RESUMEN

Several species of root-knot nematodes (Meloidogyne spp.) are known to have significant presence on turfgrass in golf course greens, particularly in the western United States. Nematodes isolated from a golf course in King County, WA were identified as Meloidogyne minor based on analysis of the large ribosomal subunit (LSU 28S D2-D3 expansion segment), the internal transcribed spacers 1 and 2 (ITS rDNA), the intergenic spacer region 2 (IGS2), and the nuclear protein-coding gene Hsp90. Sequence-characterized amplified region (SCAR) primers that were originally designed to be specific for M. fallax were found to cross-react with M. minor. A population from California was determined to be M. fallax based on juvenile tail morphology and analysis of the ribosomal markers and Hsp90, comprising the first report of this species in North America. Using trees based on Hsp90 genomic alignments, the phylogenetic relationships of these populations and known root-knot nematode species were congruent with previous trees based on ribosomal genes. Resolution of M. fallax and M. chitwoodi using Hsp90 was equivalent to species separation obtained with 28S or 18S rDNA alignments. The strengths and weaknesses of ribosomal and Hsp90 markers, and the use of SCAR polymerase chain reaction as diagnostic tools are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA