Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 12(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206001

RESUMEN

Controlling the motion of macroscopic oscillators in the quantum regime has been the subject of intense research in recent decades. In this direction, opto-mechanical systems, where the motion of micro-objects is strongly coupled with laser light radiation pressure, have had tremendous success. In particular, the motion of levitating objects can be manipulated at the quantum level thanks to their very high isolation from the environment under ultra-low vacuum conditions. To enter the quantum regime, schemes using single long-lived atomic spins, such as the electronic spin of nitrogen-vacancy (NV) centers in diamond, coupled with levitating mechanical oscillators have been proposed. At the single spin level, they offer the formidable prospect of transferring the spins' inherent quantum nature to the oscillators, with foreseeable far-reaching implications in quantum sensing and tests of quantum mechanics. Adding the spin degrees of freedom to the experimentalists' toolbox would enable access to a very rich playground at the crossroads between condensed matter and atomic physics. We review recent experimental work in the field of spin-mechanics that employ the interaction between trapped particles and electronic spins in the solid state and discuss the challenges ahead. Our focus is on the theoretical background close to the current experiments, as well as on the experimental limits, that, once overcome, will enable these systems to unleash their full potential.

2.
Phys Rev Lett ; 109(5): 053002, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-23006168

RESUMEN

The dipole blockade of Rydberg excitations is a hallmark of the strong interactions between atoms in these high-lying quantum states [M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010); D. Comparat and P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010)]. One of the consequences of the dipole blockade is the suppression of fluctuations in the counting statistics of Rydberg excitations, of which some evidence has been found in previous experiments. Here we present experimental results on the dynamics and the counting statistics of Rydberg excitations of ultracold rubidium atoms both on and off resonance, which exhibit sub- and super-Poissonian counting statistics, respectively. We compare our results with numerical simulations using a novel theoretical model based on Dicke states of Rydberg atoms including dipole-dipole interactions, finding good agreement between experiment and theory.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA