Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37610688

RESUMEN

OBJECTIVE: Cardiopulmonary bypass (CPB) is a requisite technique for thoracotomy in advanced cardiovascular surgery. However, the consequent myocardial ischemia-reperfusion injury (MIRI) is the primary culprit behind cardiac dysfunction and fatal consequences post-operation. Prior research has posited that myocardial insulin resistance (IR) plays a vital role in exacerbating the progression of MIRI. Nonetheless, the exact mechanisms underlying this phenomenon remain obscure. METHODS: We constructed pyruvate dehydrogenase E1 α subunit (PDHA1) interference and overexpression rats and used ascending aorta occlusion in an in vivo model of CPB-MIRI. We devised an in vivo model of CPB-MIRI by constructing rat models with both pyruvate dehydrogenase E1α subunit (PDHA1) interference and overexpression through ascending aorta occlusion. We analyzed myocardial glucose metabolism and the degree of myocardial injury using functional monitoring, biochemical assays, and histological analysis. RESULTS: We discovered a clear downregulation of glucose transporter 4 (GLUT4) protein content expression in the CPB I/R model. In particular, cardiac-specific PDHA1 interference resulted in exacerbated cardiac dysfunction, significantly increased myocardial infarction area, more pronounced myocardial edema, and markedly increased cardiomyocyte apoptosis. Notably, the opposite effect was observed with PDHA1 overexpression, leading to a mitigated cardiac dysfunction and decreased incidence of myocardial infarction post-global ischemia. Mechanistically, PDHA1 plays a crucial role in regulating the protein content expression of GLUT4 on cardiomyocytes, thereby controlling the uptake and utilization of myocardial glucose, influencing the development of myocardial insulin resistance, and ultimately modulating MIRI. CONCLUSION: Overall, our study sheds new light on the pivotal role of PDHA1 in glucose metabolism and the development of myocardial insulin resistance. Our findings hold promising therapeutic potential for addressing the deleterious effects of MIRI in patients.

2.
Perfusion ; 38(6): 1277-1287, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-35506656

RESUMEN

BACKGROUND: Previous studies proved that pyrin domain-containing protein 3 (NLRP3)-induced pyroptosis plays an important role in Myocardial ischemia-reperfusion injury (MIRI). Insulin can inhibit the activation of NLRP3 inflammasome, although the exact mechanism remains unclear. The aim of this study was to determine whether insulin reduces NLRP3-induced pyroptosis by regulating pyruvate dehydrogenase E1alpha subunit (PDHA1) dephosphorylation during MIRI. METHODS: Rat hearts were subject to 30 min global ischemia followed by 60 min reperfusion, with or without 0.5 IU/L insulin. Myocardial ischemia-reperfusion injury was evaluated by measuring myocardial enzymes release, Cardiac hemodynamics, pathological changes, infarct size, and apoptosis rate. Cardiac aerobic glycolysis was evaluated by measuring ATP, lactic acid content, and pyruvate dehydrogenase complex (PDHc) activity in myocardial tissue. Recombinant adenoviral vectors for PDHA1 knockdown were constructed. Pyroptosis-related proteins were measured by Western blotting analysis, immunohistochemistry staining, and ELISA assay, respectively. RESULTS: It was found that insulin significantly reduced the area of myocardial infarction, apoptosis rate, and improved cardiac hemodynamics, pathological changes, energy metabolism. Insulin inhibits pyroptosis-induced inflammation during MIRI. Subsequently, Adeno-associated virus was used to knock down cardiac PDHA1 expression. Knockdown PDHA1 not only promoted the expression of NLRP3 but also blocked the inhibitory effect of insulin on NLRP3-mediated pyroptosis in MIRI. CONCLUSIONS: Results suggest that insulin protects against MIRI by regulating PDHA1 dephosphorylation, its mechanism is not only to improve myocardial energy metabolism but also to reduce the NLRP3-induced pyroptosis.


Asunto(s)
Daño por Reperfusión Miocárdica , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Insulina/farmacología , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA