Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 28(5): 1183-1201, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30712274

RESUMEN

The life cycles of plants are characterized by two major life history transitions-germination and the initiation of flowering-the timing of which are important determinants of fitness. Unlike annuals, which make the transition from the vegetative to reproductive phase only once, perennials iterate reproduction in successive years. The floral repressor PERPETUAL FLOWERING 1 (PEP1), an ortholog of FLOWERING LOCUS C, in the alpine perennial Arabis alpina ensures the continuation of vegetative growth after flowering and thereby restricts the duration of the flowering episode. We performed greenhouse and garden experiments to compare flowering phenology, fecundity and seed traits between A. alpina accessions that have a functional PEP1 allele and flower seasonally and pep1 mutants and accessions that carry lesions in PEP1 and flower perpetually. In the garden, perpetual genotypes flower asynchronously and show higher winter mortality than seasonal ones. PEP1 also pleiotropically regulates seed dormancy and longevity in a way that is functionally divergent from FLC. Seeds from perpetual genotypes have shallow dormancy and reduced longevity regardless of whether they after-ripened in plants grown in the greenhouse or in the experimental garden. These results suggest that perpetual genotypes have higher mortality during winter but compensate by showing higher seedling establishment. Differences in seed traits between seasonal and perpetual genotypes are also coupled with differences in hormone sensitivity and expression of genes involved in hormonal pathways. Our study highlights the existence of pleiotropic regulation of seed traits by hub developmental regulators such as PEP1, suggesting that seed and flowering traits in perennial plants might be optimized in a coordinated fashion.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabis/genética , Reproducción/genética , Semillas/genética , Transactivadores/genética , Alelos , Arabis/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genotipo , Germinación/genética , Fenotipo , Latencia en las Plantas/genética , Semillas/crecimiento & desarrollo
2.
Ecol Evol ; 7(20): 8232-8261, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29075446

RESUMEN

The number of times an organism reproduces (i.e., its mode of parity) is a fundamental life-history character, and evolutionary and ecological models that compare the relative fitnesses of different modes of parity are common in life-history theory and theoretical biology. Despite the success of mathematical models designed to compare intrinsic rates of increase (i.e., density-independent growth rates) between annual-semelparous and perennial-iteroparous reproductive schedules, there is widespread evidence that variation in reproductive allocation among semelparous and iteroparous organisms alike is continuous. This study reviews the ecological and molecular evidence for the continuity and plasticity of modes of parity-that is, the idea that annual-semelparous and perennial-iteroparous life histories are better understood as endpoints along a continuum of possible strategies. I conclude that parity should be understood as a continuum of different modes of parity, which differ by the degree to which they disperse or concentrate reproductive effort in time. I further argue that there are three main implications of this conclusion: (1) that seasonality should not be conflated with parity; (2) that mathematical models purporting to explain the general evolution of semelparous life histories from iteroparous ones (or vice versa) should not assume that organisms can only display either an annual-semelparous life history or a perennial-iteroparous one; and (3) that evolutionary ecologists should base explanations of how different life-history strategies evolve on the physiological or molecular basis of traits underlying different modes of parity.

3.
BMC Ecol ; 14: 15, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24886288

RESUMEN

BACKGROUND: Although semelparity is a life history characterized by a single reproductive episode within a single reproductive season, some semelparous organisms facultatively express a second bout of reproduction, either in a subsequent season ("facultative iteroparity") or later within the same season as the primary bout ("secondary reproduction"). Secondary reproduction has been explained as the adaptive deferral of reproductive potential under circumstances in which some fraction of reproductive success would otherwise have been lost (due, for example, to inopportune timing). This deferral hypothesis predicts a positive relationship between constraints on primary reproduction and expression of secondary reproduction. The herbaceous monocarp Lobelia inflata has been observed occasionally to express a secondary reproductive episode in the field. However, it is unknown whether secondary reproduction is an example of adaptive reproductive deferral, or is more parsimoniously explained as the vestigial expression of iteroparity after a recent transition to semelparity. Here, we experimentally manipulate effective season length in each of three years to test whether secondary reproduction is a form of adaptive plasticity consistent with the deferral hypothesis. RESULTS: Our results were found to be inconsistent with the adaptive deferral explanation: first, plants whose primary reproduction was time-constrained exhibited decreased (not increased) allocation to subsequent secondary reproduction, a result that was consistent across all three years; second, secondary offspring-although viable in the laboratory-would not have the opportunity for expression under field conditions, and would thus not contribute to reproductive success. CONCLUSIONS: Although alternative adaptive explanations for secondary reproduction cannot be precluded, we conclude that the characteristics of secondary reproduction found in L. inflata are consistent with predictions of incomplete or transitional evolution to annual semelparity.


Asunto(s)
Adaptación Biológica , Lobelia/fisiología , Estaciones del Año , Lobelia/crecimiento & desarrollo , Modelos Logísticos , Modelos Biológicos , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA