RESUMEN
This study investigates a contact zone between two silverside fish species (marine Odontesthes argentinensis and freshwater O. bonariensis) in the estuarine Mar Chiquita lagoon along the Atlantic coast in Argentina (MChL), in which intermediate morphs had been reported. It has been suggested that admixture and introgression occur in MChL between these two species, but direct genetic evidence is lacking. Leveraging samples collected over several years (n = 676), we document the spatial distribution of both species and intermediate morphs within this habitat and collect landmark-based morphometric and multilocus genetic data (9876 loci for n = 110 individuals) to test the hypothesis of hybridization. Our analysis unambiguously characterizes intermediate morphs as F1 or F2 hybrids. We show that the low frequency of hybrid individuals in MChL may be explained by uneven abundance of parental species, which in turn are strongly affected by water salinity, limiting the size of the contact zone. Although hybrids seem to be fertile, their fitness may be reduced by external and intrinsic factors that may limit their success and suggest that this is an unstable hybrid zone. Genetic distinctiveness of both parental species is strongly supported by genome-wide data, explaining a known pattern of mitonuclear discordance as a consequence of hybridization followed by mitochondrial introgression. A clear signature of population genetic structure was detected in O. argentinensis, distinguishing MChL residents from marine populations of this species, that also was supported by distinctive morphometric features among these groups. Previous hypotheses of speciation in these fishes are discussed in the light of the new findings.
Asunto(s)
Peces , Salinidad , Animales , Peces/genética , Agua Dulce , Hibridación Genética , AguaRESUMEN
Rivers and lake systems in the southern cone of South America have been widely influenced by historical glaciations, carrying important implications for the evolution of aquatic organisms, including prompting transitions between marine and freshwater habitats and by triggering hybridization among incipient species via waterway connectivity and stream capture events. Silverside fishes (Odontesthes) in the region comprise a radiation of 19 marine and freshwater species that have been hypothesized on the basis of morphological or mitochondrial DNA data to have either transitioned repeatedly into continental waters from the sea or colonized marine habitats following freshwater diversification. New double digest restriction-site associated DNA data presented here provide a robust framework to investigate the biogeographical history of and habitat transitions in Odontesthes. We show that Odontesthes silversides originally diversified in the Pacific but independently colonized the Atlantic three times, producing three independent marine-to-freshwater transitions. Our results also indicate recent introgression of marine mitochondrial haplotypes into two freshwater clades, with more recurring instances of hybridization among Atlantic- versus Pacific-slope species. In Pacific freshwater drainages, hybridization with a marine species appears to be geographically isolated and may be related to glaciation events. Substantial structural differences of estuarine gradients between these two geographical areas may have influenced the frequency, intensity and evolutionary effects of hybridization events.
Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Peces/genética , Filogeografía , Animales , Ecosistema , Especiación Genética , Variación Genética , Genómica , Haplotipos/genética , Lagos , Ríos , América del Sur , Especificidad de la EspecieRESUMEN
Salinity gradients are critical habitat determinants for freshwater organisms. Silverside fishes in the genus Odontesthes have recently and repeatedly transitioned from marine to freshwater habitats, overcoming a strong ecological barrier. Genomic and transcriptomic changes involved in this kind of transition are only known for a few model species. We present new data and analyses of gene expression and microbiome composition in the gills of two closely related silverside species, marine O. argentinensis and freshwater O. bonariensis and find more than three thousand transcripts differentially expressed, with osmoregulatory/ion transport genes and immune genes showing very different expression patterns across species. Interspecific differences also involve more than one thousand transcripts with nonsynonymous SNPs in the coding sequences, most of which were not differentially expressed. In addition to characterizing gill transcriptomes from wild-caught marine and freshwater fishes, we test experimentally the response to salinity increases by O. bonariensis collected from freshwater habitats. Patterns of expression in gill transcriptomes of O. bonariensis exposed to high salinity do not resemble O. argentinensis mRNA expression, suggesting lack of plasticity for adaptation to marine conditions in this species. The diversity of functions associated with both the differentially expressed set of transcripts and those with sequence divergence plus marked microbiome differences suggest that multiple abiotic and biotic factors in marine and freshwater habitats are driving transcriptomic differences between these species.
RESUMEN
In vertebrates, kisspeptins and their receptors are known to be related to puberty onset and gonadal maturation, however, there are few studies concerning their role in early development. Here, we characterize the kisspeptin system in the pejerrey, Odontesthes bonariensis, a fish with strong temperature-dependent sex determination. We reconstructed the phylogenetic history of the two ligands (kiss1 and kiss 2) and two receptors (kissr2 and kissr3) in pejerrey in the context of recent classifications of bony fishes, determined their tissue distribution and documented the early expression pattern of these ligands and receptors. Phylogenetic analysis of these gene families clearly resolved the percomorph clade and grouped pejerrey with Beloniformes. Paralogous sets of genes putatively arising from the teleost-specific genome duplication event (3R) were not detected. Kisspeptins and their receptors showed a wide tissue distribution in adult pejerrey, including tissues not related to reproduction. In larvae reared at 24°C, the four kisspeptin elements were expressed in the head from week 1 to week 8 of life, with no differences in transcript levels. Larvae kept at a female-producing temperature (17°C) did not show statistically significant differences in the transcript levels of all analyzed genes during the sex determination/differentiation period; however, in those larvae raised at male producing temperature (29°C), kiss2 levels were increased at week 4 after hatching. These results showed that all members of the kisspeptin system are expressed at this early period, and the increase of kiss2 transcripts at week 4 could be interpreted as it would be related to the differentiation of the brain-pituitary axis in male development.