RESUMEN
The differential effects of UV-B on the inhibition or activation of protective mechanisms to maintain cells photosynthetically active were investigated in native microalgae. Four strains were used, including two Chlorella sorokiniana strains, F4 and LG1, isolated from a Mediterranean inland swamp and a recycled cigarette butt's substrate, respectively, and two isolates from an Ecuadorian highland lake related to Pectinodesmus pectinatus (PEC) and Ettlia pseudoalveolaris (ETI). Monocultures were exposed to acute UV-B (1.7 W m-2) over 18 h under controlled conditions. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments, non-enzymatic antioxidants, and chlorophyll a fluorescence, were evaluated at specific time points. Results showed that UV-B significantly compromised all the physiological parameters in F4, thereby resulting in the most UV-B-sensitive strain. Contrarily, UV-B exposure did not lead to changes in the PEC physiological traits, resulting in the best UV-B-resistant strain. This could be attributed to the acclimation to high light habitat, where maintaining a constitutive phenotype (at the photosynthetic level) is strategically advantageous. Differently, LG1 and ETI at 12 h of UV-B exposure showed different UV-B responses, which is probably related to acclimation, where in LG1, the pigments were recovered, and the antioxidants were still functioning, while in ETI, the accumulation of pigments and antioxidants was increased to avoid further photodamage. Consequently, the prolonged exposure in LG1 and ETI resulted in species-specific metabolic regulation (e.g., non-enzymatic antioxidants) in order to constrain full photoinhibition under acute UV-B.
Asunto(s)
Chlorella , Microalgas , Clorofila/metabolismo , Clorofila A , Microalgas/metabolismo , Chlorella/metabolismo , Ecuador , Fotosíntesis , Antioxidantes/metabolismo , Rayos UltravioletaRESUMEN
In this study, the potential of ultraviolet B (UV-B) radiation to alleviate the effects of pollutants in cigarette butt wastewater (CBW) was investigated using different Chlorella sorokiniana strains (F4, R1 and LG1). Microalgae were treated with UV-B (1.7 W m-2) for 3 days prior to their exposure to CBW and then incubated for 4 days in the absence or presence of UV-B. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments and non-enzymatic antioxidants, as well as nicotine and nicotyrine removal, were evaluated in 7-day cultures. UV-B treatments did not negatively impact algal chlorophyll or carotenoid production. UV-B acclimation was strain-dependent, correlating with native environment adaptations and genetic constitutions. UV-B as a pretreatment had long-term positive effects on non-enzymatic antioxidant capacity. However, LG1 needed more time to readjust the pro-oxidant/antioxidant balance, as it was the most UV-B-sensitive. Phenolic compounds played an important role in the antioxidant system response to UV-B, while flavonoids did not contribute to the total antioxidant capacity. Although cross-resistance between UV-B and CBW was observed in F4 and R1, only R1 showed nicotine/nicotyrine catabolism induction due to UV-B. Overall, the results suggest that UV-B activates defense pathways associated with resistance or tolerance to nicotine and nicotyrine.