Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Langmuir ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269254

RESUMEN

Minimum energy configurations in 2D material-based heterostructures can enable interactions with external chemical species that are not observable for their monolithic counterparts. Density functional theory (DFT) calculations reveal that the binding energy of divalent toxic metal ions of Cd, Pb, and Hg on graphene-gold heterointerfaces is negative, in contrast to the positive value associated with free-standing graphene. The theoretical predictions are confirmed experimentally by Surface Plasmon Resonance (SPR) spectroscopy, where a strong binding affinity is measured for all the heavy metal ions in water. The results indicate the formation of a film of heavy metal ions on the graphene-gold (Gr/Au) heterointerfaces, where the adsorption of the ions follows a Langmuir isotherm model. The highest thermodynamic affinity constant K = 3.1 × 107 L mol-1 is observed for Hg2+@Gr/Au heterostructures, compared to 1.1 × 107 L mol-1 and 8.5 × 106 L mol-1 for Pb2+@Gr/Au and Cd2+@Gr/Au, respectively. In the case of Hg2+ ions, it was observed a sensitivity of about 0.01°/ppb and a detection limit of 0.7 ppb (∼3 nmol L-1). The combined X-ray photoelectron spectroscopy (XPS) and SPR analysis suggests a permanent interaction of all of the HMIs with the Gr/Au heterointerfaces. The correlation between the theoretical and experimental results indicates that the electron transfer from the graphene-gold heterostructures to the heavy metal ions is the key for correct interpretation of the enhanced sensitivity of the SPR sensors in water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA