Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 665: 124690, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260749

RESUMEN

Epigallocatechin-3-gallate (EGCG), a catechin present in green tea, has been studied extensively for its potential as a cosmetic ingredient due to its various biological properties. However, the low stability and bioavailability of EGCG have hindered its effective utilization in cosmetic applications. This study, to improve the stability and bioavailability of EGCG for reversing skin photo-aging, nonapeptide-1-conjugated mesoporous silica nanoparticles (EGCG@NP-MSN) were fabricated to load EGCG. MSNs can regulate the EGCG release and provide ultraviolet light (UV) protection to possess excellent photostability. Nonapeptide-1 exhibits melanin transfer interference properties and reduces the melanin content in treated skin areas. In vitro and in vivo results confirmed that the EGCG-loaded MSNs retained antioxidant properties, effectively scavenged the melanin and significantly reduced the deoxyribonucleic acid (DNA) damage in skin cells exposed to UV irradiation. The melanin inhibition rate is 5.22 times and the tyrosinase inhibition rate is 1.57 times that of free EGCG. The utilization of this innovative platform offers the potential for enhanced stability, controlled release, and targeted action of EGCG, thereby providing significant advantages for skin application.This delivery system combines the advantages of antioxidant, anti-aging, and anti-UV radiation properties, paving the way for the cosmetics development with improved efficacy and better performance in promoting skin health and appearance.

2.
Eur J Pharm Biopharm ; 201: 114367, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876360

RESUMEN

Despite the great potential of starving therapy caused by nanoreactor based on glucose oxidase (GOX) in tumor therapy, efficiency and uncontrolled reaction rates in vivo lead to inevitable toxicity to normal tissues, which seriously hindering their clinical conversion. Herein, a cascade nanoreactor (GOX/Mn/MPDA) was constructed by coating mesoporous polydopamine nanoparticles (MPDA) with MnO2 shell and then depositing GOX into honeycomb-shaped manganese oxide nanostructures to achieve a combination of ferroptosis, photothermal therapy and starving therapy. Upon uptake of nanodrugs to cancer cells, the MnO2 shell would deplete glutathione (GSH) and produce Mn2+, while a large amount of H2O2 generated from the catalytic oxidation of glucose by GOX would accelerate the Fenton-like reaction mediated by Mn2+, producing high toxic •OH. More importantly, the cascade reaction between GOX and MnO2 would be further strengthened by localized hyperthermia caused by irradiated by near-infrared laser (NIR), inducing significant anti-tumor effects in vitro and in vivo. Regarding the effectiveness of tumor treatment in vivo, the tumor inhibition rate achieved an impressive 64.33%. This study provided a new strategy for anti-tumor therapeutic by designing a photothermal-enhanced cascade catalytic nanoreactor.


Asunto(s)
Ferroptosis , Glucosa Oxidasa , Indoles , Compuestos de Manganeso , Nanopartículas , Óxidos , Terapia Fototérmica , Polímeros , Terapia Fototérmica/métodos , Compuestos de Manganeso/química , Animales , Humanos , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Indoles/química , Polímeros/química , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/administración & dosificación , Nanopartículas/química , Ratones , Óxidos/química , Línea Celular Tumoral , Peróxido de Hidrógeno/metabolismo , Ratones Endogámicos BALB C , Terapia Combinada/métodos , Femenino , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Ratones Desnudos
3.
Int J Pharm ; 657: 124160, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38663642

RESUMEN

Addressing the pervasive issue of bacteria and biofilm infections is crucial in the development of advanced antifouling wound dressings. In this study, a novel wound healing treatment using sulfobetaine (SBMA) decorated electrospun fibrous membrane based on polycaprolactone (PCL)/nitric oxide (NO) donors was developed. The fabrication involved a dual strategy, first integrating NO donors into mesoporous polydopamine (MPDA) and complexed with PCL/PEI to electrospin nanofibers. The fibrous membrane exhibited a potent antibacterial response upon irradiation at 808 nm, owing to a combination of NO and photothermal effect that effectively targets bacteria and disrupts biofilms. Surface functionalization of the membrane with PEI allowed for the attachment of SBMA via Michael addition, fabricating a zwitterionic surface, which significantly hinders protein adsorption and reduces biofilm formation on the wound dressing. In vitro and in vivo assessments confirmed the rapid bactericidal capabilities and its efficacy in biofilm eradication. Combining photothermal activity, targeted NO release and antifouling surface, this multifaceted wound dressing addresses key challenges in bacterial infection management and biofilm eradication, promoting efficient wound healing.


Asunto(s)
Antibacterianos , Vendajes , Betaína , Biopelículas , Indoles , Nanofibras , Poliésteres , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Biopelículas/efectos de los fármacos , Animales , Cicatrización de Heridas/efectos de los fármacos , Poliésteres/química , Indoles/química , Indoles/farmacología , Betaína/química , Betaína/farmacología , Betaína/análogos & derivados , Nanofibras/química , Polímeros/química , Óxido Nítrico/metabolismo , Staphylococcus aureus/efectos de los fármacos , Incrustaciones Biológicas/prevención & control , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/química , Ratones , Propiedades de Superficie , Escherichia coli/efectos de los fármacos , Polietileneimina/química
4.
Cancer Res ; 84(5): 659-674, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38190710

RESUMEN

Epithelial-mesenchymal transition (EMT) is a fundamental cellular process frequently hijacked by cancer cells to promote tumor progression, especially metastasis. EMT is orchestrated by a complex molecular network acting at different layers of gene regulation. In addition to transcriptional regulation, posttranscriptional mechanisms may also play a role in EMT. Here, we performed a pooled CRISPR screen analyzing the influence of 1,547 RNA-binding proteins on cell motility in colon cancer cells and identified multiple core components of P-bodies (PB) as negative modulators of cancer cell migration. Further experiments demonstrated that PB depletion by silencing DDX6 or EDC4 could activate hallmarks of EMT thereby enhancing cell migration in vitro as well as metastasis formation in vivo. Integrative multiomics analysis revealed that PBs could repress the translation of the EMT driver gene HMGA2, which contributed to PB-meditated regulation of EMT. This mechanism is conserved in other cancer types. Furthermore, endoplasmic reticulum stress was an intrinsic signal that induced PB disassembly and translational derepression of HMGA2. Taken together, this study has identified a function of PBs in the regulation of EMT in cancer. SIGNIFICANCE: Systematic investigation of the influence of posttranscriptional regulation on cancer cell motility established a connection between P-body-mediated translational control and EMT, which could be therapeutically exploited to attenuate metastasis formation.


Asunto(s)
Neoplasias del Colon , Cuerpos de Procesamiento , Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Detección Precoz del Cáncer , Factores de Transcripción/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Línea Celular Tumoral , Proteínas/genética
5.
Eur J Pharm Biopharm ; 190: 284-293, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37532638

RESUMEN

Artesunate (ART) has potent anticancer activity but it suffers from poor stability and low bioavailability in vivo due to the special endoperoxide moiety in the molecules. In this work, we fabricated programmable enzyme/reactive oxygen species (ROS) responsive ART complex carriers with size and charge adaptive regulation in order to improve stability and overcome biochemical hurdles of solid tumor. The complex carries (ART/AA-PAMAM@HA) were created by electrostatic interaction between dendrimer-ART/arachidonic acid (AA) (ART/AA-PAMAM) and hyaluronic acid (HA), which can proactively penetrate deeply into tumors and selective drug release. Specifically, ART induced Fenton reaction and produced a mass of ROS and lipid peroxides (LPO), leading to the depressing of GSH level and glutathione peroxidase 4 (GPX4) activity. Meanwhile, exogenous AA further promoted the accumulation of LPO by cascade regulating ferroptosis pathway. In the anti-tumor efficacy in vivo, the tumor inhibition ratio was achieved to 46.92%. This work shows a new anti-tumor strategy triggering ferroptosis via regulating redox homeostasis.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Artesunato/farmacología , Especies Reactivas de Oxígeno , Disponibilidad Biológica , Ácido Hialurónico , Peróxidos Lipídicos
6.
Biomater Adv ; 151: 213451, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37150081

RESUMEN

Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.


Asunto(s)
Hipertermia Inducida , Neoplasias Nasofaríngeas , Profármacos , Animales , Profármacos/farmacología , Profármacos/uso terapéutico , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Poliésteres , Mamíferos
7.
BMC Biol ; 17(1): 1, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30616566

RESUMEN

BACKGROUND: Current mesoscale 3D imaging techniques are limited to transparent or cleared samples or require the use of X-rays. This is a severe limitation for many research areas, as the 3D color surface morphology of opaque samples-for example, intact adult Drosophila, Xenopus embryos, and other non-transparent samples-cannot be assessed. We have developed "ALMOST," a novel optical method for 3D surface imaging of reflective opaque objects utilizing an optical projection tomography device in combination with oblique illumination and optical filters. RESULTS: As well as demonstrating image formation, we provide background information and explain the reconstruction-and consequent rendering-using a standard filtered back projection algorithm and 3D software. We expanded our approach to fluorescence and multi-channel spectral imaging, validating our results with micro-computed tomography. Different biological and inorganic test samples were used to highlight the versatility of our approach. To further demonstrate the applicability of ALMOST, we explored the muscle-induced form change of the Drosophila larva, imaged adult Drosophila, dynamically visualized the closure of neural folds during neurulation of live Xenopus embryos, and showed the complementarity of our approach by comparison with transmitted light and fluorescence OPT imaging of a Xenopus tadpole. CONCLUSION: Thus, our new modality for spectral/color, macro/mesoscopic 3D imaging can be applied to a variety of model organisms and enables the longitudinal surface dynamics during development to be revealed.


Asunto(s)
Imagenología Tridimensional/métodos , Tomografía Óptica/métodos , Animales , Drosophila , Xenopus
8.
G3 (Bethesda) ; 6(8): 2309-18, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27261006

RESUMEN

Clustered protocadherins (cPcdhs) constitute the largest subgroup of the cadherin superfamily, and in mammals are grouped into clusters of α-, ß-, and γ-types. Tens of tandemly arranged paralogous Pcdh genes of the Pcdh clusters generate a substantial diversity of receptor isoforms. cPcdhs are known to have important roles in neuronal development, and genetic alterations of cPcdhs have been found to be associated with several neurological diseases. Here, we present a first characterization of cPcdhs in Xenopus tropicalis We determined and annotated all cPcdh isoforms, revealing that they are present in a single chromosomal locus. We validated a total of 96 isoforms, which we show are organized in three distinct clusters. The X. tropicalis cPcdh locus is composed of one α- and two distinct γ-Pcdh clusters (pcdh-γ1 and pcdh-γ2). Bioinformatics analyses assisted by genomic BAC clone sequencing showed that the X. tropicalis α- and γ-Pcdhs are conserved at the cluster level, but, unlike mammals, X. tropicalis does not contain a ß-Pcdh cluster. In contrast, the number of γ-Pcdh isoforms has expanded, possibly due to lineage-specific gene duplications. Interestingly, the number of X. tropicalis α-Pcdhs is identical between X. tropicalis and mouse. Moreover, we find highly conserved as well as novel promoter elements potentially involved in regulating the cluster-specific expression of cPcdh isoforms. This study provides important information for the understanding of the evolutionary history of cPcdh genes and future mechanistic studies. It provides an annotated X. tropicalis cPcdh genomic map and a first molecular characterization essential for functional and comparative studies.


Asunto(s)
Cadherinas/genética , Variación Genética , Genómica , Familia de Multigenes/genética , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular/genética , Humanos , Ratones , Isoformas de Proteínas/genética , Xenopus/genética
9.
Eur J Neurosci ; 33(5): 819-30, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21219481

RESUMEN

Neural stem cells from different regions within the subventricular zone (SVZ) are able to produce several different subtypes of interneurons in the olfactory bulb throughout life. Previous studies have shown that ischemic stroke induces the production of new neurons in the damaged striatum from the SVZ. However, the origins and genetic profiles of these newborn neurons remain largely unknown as SVZ neural stem cells are heterogeneous. In the present study, using a mouse model of perinatal hypoxic-ischemic (H/I) brain injury combined with BrdU labeling methods, we found that, as in rat brains, virtually all newborn neuroblasts that migrate from the SVZ into the ischemic injured striatum exclusively express the transcription factor Sp8. Furthermore, although newborn neuroblasts are plentiful in the damaged striatum, only a few can differentiate into calretinin-expressing (CR+) interneurons that continuously express Sp8. Genetic fate mapping reveals that newly born CR+ interneurons are generated from Emx1-expressing neural stem cells in the dorsal-lateral SVZ. These results suggest that the fate of the Emx1-expressing lineage in the ischemic damaged striatum is restricted. However, when Sp8 was conditionally inactivated in the Emx1-lineage cells, Pax6 was ectopically expressed by a subpopulation of Emx1-derived CR+ cells in the normal and damaged striatum. Interestingly, these cells possessed large cell bodies and long processes. This work identifies the origin of the newly born CR+ interneurons in the damaged striatum after ischemic brain injury.


Asunto(s)
Isquemia Encefálica/fisiopatología , Cuerpo Estriado/citología , Interneuronas/fisiología , Células-Madre Neurales/fisiología , Animales , Isquemia Encefálica/patología , Linaje de la Célula , Cuerpo Estriado/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Dominio Doblecortina , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/citología , Neuropéptidos/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Ratas , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA