Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 303(Pt 1): 134968, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35580642

RESUMEN

Remdesivir (RDV), dexamethasone (DEX) and hydroxychloroquine (HCQ) were widely used in the treatment of COVID-19 pneumonia, possibly causing environmental risks and drug-resistance viruses. This study elucidated the degradation mechanisms and potential toxicity risks of the three anti-COVID-19 drugs by UV and ultraviolet-coupled advanced oxidation processes (UV/AOPs). All the drugs could be degraded by more than 98% within 3 min under the following optimal conditions: pH of 5.0 and drug-to-oxidant (H2O2) molar ratio of 1:200. Combined with density functional theory (DFT) analysis and high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-QTOF-MS), twenty-four transformation products (TPs) were detected and the main degradation pathways were investigated. Based on bacterial luminescence inhibition test and the peak-area evolution of TPs, RDV and HCQ showed an obvious toxicity-increase region when TPs were generated in large quantities, while the toxicity of DEX continued to decline during degradation processes. By QSAR predictions, the main contributors to the toxicity evolution during the UV/AOPs were predicted. Halogen-containing TPs showed significantly higher toxicity than other TPs, and thus the chlorine-containing structure in HCQ presented the potential toxicity. Appropriate reaction parameters and adequate reaction time for the UV/AOPs could eliminate the toxicity of TPs and ensure environmental safety. This study could play a positive role in the treatment of anti-COVID-19 drugs and their environmental hazard assessment.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Peróxido de Hidrógeno/química , Espectrometría de Masas , Oxidación-Reducción , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
2.
J Hazard Mater ; 413: 125281, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33582465

RESUMEN

Increasing use of organophosphorus flame retardants (OPFRs) has aroused great concern to their uncertain environment risk, especially to human health risk. In our study, hepatotoxicity screening of six aryl-OPFRs, potential hepatotoxicity mechanism of 2-ethylhexyldiphenyl phosphate (EHDPP) using RNA-sequencing and its metabolites were investigated in human hepatocytes (L02). The toxicity results demonstrated that EHDPP should be prioritized for further research with the highest toxicity. Further RNA-seq results through GO and KEGG enrichment analysis indicated that exposure to 10 mg/L of EHDPP significantly affected energy homeostasis, endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and inflammation response in cells. The top 12 hub genes were validated by RT-qPCR and conformed to be mainly related to glycolysis and ER stress, followed by cell cycle and inflammation response. Western blot, apoptosis detection, glycolysis stress test, and cell cycle analysis were further performed to verify the above main pathways. Additionally, it was found in the metabolism experiment that detoxification of EHDPP by phase I and phase II metabolism in cells wasn't significant until 48 h with a metabolic rate of 6.12%. EHDPP was stable and still dominated the induction of toxicity. Overall, this study provided valuable information regarding the toxicity and potential metabolism pathway of EHDPP.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Retardadores de Llama , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Retardadores de Llama/toxicidad , Hepatocitos , Humanos , Organofosfatos/toxicidad , Compuestos Organofosforados/toxicidad , Fosfatos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA