Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 11(9)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34578633

RESUMEN

Spinel ZnGa2O4 films were grown on c-plane sapphire substrates at the substrate temperature of 400 °C by radio-frequency magnetron sputtering. Post thermal annealing was employed at the annealing temperature of 700 °C in order to enhance their crystal quality. The effect of thermal annealing on the microstructural and optoelectronic properties of ZnGa2O4 films was systematically investigated in various ambiences, such as air, nitrogen, and oxygen. The X-ray diffraction patterns of annealed ZnGa2O4 films showed the crystalline structure to have (111) crystallographic planes. Transmission electron micrographs verified that ZnGa2O4 film annealed under air ambience possesses a quasi-single-crystalline structure. This ZnGa2O4 film annealed under air ambience exhibited a smooth surface, an excellent average transmittance above 82% in the visible region, and a wide bandgap of 5.05 eV. The oxygen vacancies under different annealing ambiences were revealed a substantial impact on the material and photodetector characteristics by X-ray photoelectron spectrum investigations. ZnGa2O4 film exhibits optimal performance as a metal-semiconductor-metal photodetector when annealed under air ambience. Under these conditions, ZnGa2O4 film exhibits a higher photo/dark current ratio of ~104 order, as well as a high responsivity of 2.53 A/W at the bias of 5 V under an incident optical light of 240 nm. These results demonstrate that quasi-single-crystalline ZnGa2O4 films have significant potential in deep-ultraviolet applications.

2.
ACS Appl Mater Interfaces ; 11(19): 17563-17569, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31026139

RESUMEN

Aluminum-gallium oxide (AGO) thin films with wide bandgaps of greater than 5.0 eV were grown using pulsed laser deposition. As evidenced by X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy, the oxygen chamber pressure considerably affected the lattice deformation in the AGO materials. Under high oxygen pressure, the lattice deformation reduced the d-spacing of the AGO(-201) plane. In the measured transmittance spectra of the AGO films, this narrowing of the d-spacing in the main plane manifested as a high-energy shift of the absorption edge. The AGO films were then installed as the active layers in the metal-semiconductor-metal photodetectors (PDs). The lattice deformation was observed to enhance the photocurrent and reduce the dark current of the device. The responsivity was 20.7 times higher in the lattice-deformed AGO-based PD sample than that in the nondeformed sample. It appeared that the lattice deformation induced the separation of the piezopotential, improving the efficiency of the photogenerated carrier recombination and, consequently, shortening the decay time of the photodetector.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA