Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 1273, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627667

RESUMEN

Multicilia are delicate motile machineries, and how they are accurately assembled is poorly understood. Here, we show that fibrogranular materials (FGMs), large arrays of electron-dense granules specific to multiciliated cells, are essential for their ultrastructural fidelity. Pcm1 forms the granular units that further network into widespread FGMs, which are abundant in spherical FGM cores. FGM cores selectively concentrate multiple important centriole-related proteins as clients, including Cep131 that specifically decorates a foot region of ciliary central pair (CP) microtubules. FGMs also tightly contact deuterosome-procentriole complexes. Disruption of FGMs in mouse cells undergoing multiciliogenesis by Pcm1 RNAi markedly deregulates centriolar targeting of FGM clients, elongates CP-foot, and alters deuterosome size, number, and distribution. Although the multicilia are produced in correct numbers, they display abnormal ultrastructure and motility. Our results suggest that FGMs organize deuterosomes and centriole-related proteins to facilitate the faithful assembly of basal bodies and multiciliary axonemes.


Asunto(s)
Células Epiteliales/metabolismo , Microtúbulos/metabolismo , Animales , Axonema/metabolismo , Cuerpos Basales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ratones , Tráquea/citología , Tráquea/metabolismo
2.
J Cell Sci ; 133(13)2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32503940

RESUMEN

The Cep63-Cep152 complex located at the mother centriole recruits Plk4 to initiate centriole biogenesis. How the complex is targeted to mother centrioles, however, is unclear. In this study, we show that Cep57 and its paralog, Cep57l1, colocalize with Cep63 and Cep152 at the proximal end of mother centrioles in both cycling cells and multiciliated cells undergoing centriole amplification. Both Cep57 and Cep57l1 bind to the centrosomal targeting region of Cep63. The depletion of both proteins, but not either one, blocks loading of the Cep63-Cep152 complex to mother centrioles and consequently prevents centriole duplication. We propose that Cep57 and Cep57l1 function redundantly to ensure recruitment of the Cep63-Cep152 complex to the mother centrioles for procentriole formation.


Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Ciclo Celular , Proteínas de Ciclo Celular/genética , Centriolos/genética
3.
EMBO Rep ; 20(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833343

RESUMEN

Mammalian epithelial cells use a pair of parental centrioles and numerous deuterosomes as platforms for efficient basal body production during multiciliogenesis. How deuterosomes form and function, however, remain controversial. They are proposed to arise either spontaneously for massive de novo centriole biogenesis or in a daughter centriole-dependent manner as shuttles to carry away procentrioles assembled at the centriole. Here, we show that both parental centrioles are dispensable for deuterosome formation. In both mouse tracheal epithelial and ependymal cells (mTECs and mEPCs), discrete deuterosomes in the cytoplasm are initially procentriole-free. They emerge at widely dispersed positions in the cytoplasm and then enlarge, concomitant with their increased ability to form procentrioles. More importantly, deuterosomes still form efficiently in mEPCs whose daughter centriole or even both parental centrioles are eliminated through shRNA-mediated depletion or drug inhibition of Plk4, a kinase essential to centriole biogenesis in both cycling cells and multiciliated cells. Therefore, deuterosomes can be assembled autonomously to mediate de novo centriole amplification in multiciliated cells.

4.
J Proteome Res ; 17(2): 858-869, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29215295

RESUMEN

Traumatic brain injury (TBI), as a neurological injury, becomes a leading cause of disability and mortality due to lacking effective therapy. About 75% of TBI is mild traumatic brain injury (mTBI). However, the complex molecular mechanisms underlying mTBI pathophysiology remains to be elucidated. In this study, iTRAQ-based quantitative proteomic approach was employed to measure temporal-global proteome changes of rat brain tissues from different time points (1 day, 7 day and 6 months) post single mTBI (smTBI) and repetitive mTBI (rmTBI). A total of 5169 proteins were identified, of which, 237 proteins were significantly changed between control rats and mTBI model rats. Fuzzy c-means (FCM) clustering analysis classified these 237 proteins into six clusters according to their temporal pattern of protein abundance. Functional bioinformatics analysis and protein-protein interaction (PPI) network mapping of these FCM clusters showed that phosphodiesterase 10A (Pde10a) and guanine nucleotide-binding protein G (olf) subunit alpha (Gnal) were the node proteins in the cAMP signaling pathway. Other biological processes, such as cell adhesion, autophagy, myelination, microtubule depolymerization and brain development, were also over-represented in FCM clusters. Further Western Blot experiments confirmed that Pde10a and Gnal were acutely up-regulated in severity-dependent manner by mTBI, but these two proteins could not be down-regulated to basal level at the time point of 6 months post repetitive mTBI. Our study demonstrated that different severity of mTBI cause significant temporal profiling change at the proteomic level and pointed out the cAMP signaling pathway-related proteins, Pde10a and Gnal, may play important roles in the pathogenesis and recovery of mTBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo/genética , AMP Cíclico/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/genética , Proteínas del Tejido Nervioso/aislamiento & purificación , Hidrolasas Diéster Fosfóricas/genética , Proteoma/aislamiento & purificación , Animales , Encéfalo/metabolismo , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Cromatografía Líquida de Alta Presión , Análisis por Conglomerados , Biología Computacional/métodos , Modelos Animales de Enfermedad , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Regulación de la Expresión Génica , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Mapeo de Interacción de Proteínas , Proteolisis , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Coloración y Etiquetado/métodos , Índices de Gravedad del Trauma
5.
Nat Cell Biol ; 15(12): 1434-44, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24240477

RESUMEN

Dense multicilia in higher vertebrates are important for luminal flow and the removal of thick mucus. To generate hundreds of basal bodies for multiciliogenesis, specialized terminally differentiated epithelial cells undergo massive centriole amplification. In proliferating cells, however, centriole duplication occurs only once per cell cycle. How cells ensure proper regulation of centriole biogenesis in different contexts is poorly understood. We report that the centriole amplification is controlled by two duplicated genes, Cep63 and Deup1. Cep63 regulates mother-centriole-dependent centriole duplication. Deup1 governs deuterosome assembly to mediate large-scale de novo centriole biogenesis. Similarly to Cep63, Deup1 binds to Cep152 and then recruits Plk4 to activate centriole biogenesis. Phylogenetic analyses suggest that Deup1 diverged from Cep63 in a certain ancestor of lobe-finned fishes during vertebrate evolution and was subsequently adopted by tetrapods. Thus, the Cep63 gene duplication has enabled mother-centriole-independent assembly of the centriole duplication machinery to satisfy different requirements for centriole number.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Centriolos/fisiología , Cilios/fisiología , Animales , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Células Epiteliales/fisiología , Células Epiteliales/ultraestructura , Evolución Molecular , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Proteínas Asociadas a Microtúbulos , Filogenia , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas , Tráquea/citología , Xenopus
6.
J Mol Cell Biol ; 5(4): 239-49, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23329853

RESUMEN

Nanog, Sox2, and Oct4 are key transcription factors critical for the pluripotency and self-renewal of embryonic stem (ES) cells. Their downregulations lead to differentiation, accompanied with changes in cell motility. Whether these factors impact cell motility directly, however, is not clear. Here we addressed this question by initially assessing their effect in non-stem cells. We found that the ectopic expression of Nanog, Sox2, or Oct4 markedly inhibited ECV304 cell migration. Detailed examinations revealed that Nanog induced disorganizations of the actin cytoskeleton and peripheral localizations of focal adhesions. These effects required its DNA-binding domain and are thus transcription dependent. Furthermore, thymosin ß4 and Rnd3 were identified as its downstream targets. Their depletions in ECV304 cells by RNAi phenocopied the ectopic expression of Nanog in both cell motility and actin organization, whereas their ectopic expressions rescued the migration defect of Nanog overexpression. Both proteins were upregulated during mouse ES cell differentiation. Their levels in the pluripotent mouse P19 cells also increased upon Nanog ablation, coincident with an increase in cell motility. Moreover, persistent expression of Nanog in zebrafish embryos suppressed gastrulation and cell migration. These results indeed suggest a dual role of certain transcription factors in the orchestration of differentiation and motility.


Asunto(s)
Movimiento Celular/genética , Regulación hacia Abajo , Proteínas de Homeodominio/fisiología , Timosina/genética , Proteínas de Unión al GTP rho/genética , Actinas/metabolismo , Animales , Diferenciación Celular/genética , Línea Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Interferencia de ARN , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción SOXB1/fisiología , Regulación hacia Arriba , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
7.
Traffic ; 10(9): 1337-49, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19522757

RESUMEN

Axonal transport is critical for neuronal function and survival. Cytoplasmic dynein and its accessory complex dynactin form a microtubule minus end-directed motor in charge of retrograde transport. In this study, we show that Nudel, a dynein regulator, was highly expressed in dorsal root ganglion (DRG) neurons. Microinjection of anti-Nudel antibody into cultured DRG neurons abolished retrograde transport of membranous organelles in the axon and led to dispersions of Golgi cisternae in the soma. As a result, lysosomes, which are normally enriched in the soma, moved persistently into and thus accumulated in axons. Endo-lysosome formation was also markedly delayed. As anterograde motility of mitochondria was not inhibited, the antibody apparently did not abolish retrograde transport by destructing axonal microtubule tracks. Similar results were obtained by microinjecting N-terminal Nudel, anti-dynein antibody or a p150(Glued) mutant capable of abrogating the dynein-dynactin association. These results indicate a critical role of Nudel in dynein-mediated axonal transport. Moreover, the effects of dynein on endolysosome formation and regional sequestration of lysosomes may contribute to defects in the endocytic pathway seen in neurons of patients or animals with malfunction of dynein.


Asunto(s)
Transporte Axonal , Axones/metabolismo , Proteínas Portadoras/fisiología , Dineínas/metabolismo , Endosomas/metabolismo , Lisosomas/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos Monoclonales/farmacología , Transporte Axonal/efectos de los fármacos , Axones/fisiología , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Células Cultivadas , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ratones , Microinyecciones , Microscopía Confocal , Microscopía Fluorescente , Neuronas/efectos de los fármacos , Neuronas/metabolismo
8.
Exp Cell Res ; 314(1): 213-26, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17964570

RESUMEN

Sertoli cells of testis belong to a unique type of polarized epithelial cells and are essential for spermatogenesis. They form the blood-testis barrier at the base of seminiferous tubule. Their numerous long, microtubule-rich processes extend inward and associate with developing germ cells to sustain germ cell growth and differentiation. How Sertoli cells develop and maintain their elaborate processes has been an intriguing question. Here we showed that, by microinjecting lentiviral preparations into mouse testes of 29 days postpartum, we were able to specifically label individual Sertoli cells with GFP, thus achieving a clear view of their natural configurations together with associated germ cells in situ. Moreover, compared to other microtubule plus end-tracking proteins such as CLIP-170 and p150(Glued), EB1 was highly expressed in Sertoli cells and located along microtubule bundles in Sertoli cell processes. Stable overexpression of a GFP-tagged dominant-negative EB1 mutant disrupted microtubule organizations in cultured Sertoli cells. Furthermore, its overexpression in testis Sertoli cells altered their shapes. Sertoli cells in situ became rod-like, with decreased basal and lateral cell processes. Seminiferous tubule circularity and germ cell number were also reduced. These data indicate a requirement of proper microtubule arrays for Sertoli cell plasticity and function in testis.


Asunto(s)
Polaridad Celular/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Testículo/metabolismo , Animales , Diferenciación Celular/fisiología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/genética , Vectores Genéticos , Células Germinativas/citología , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Unión Proteica/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Túbulos Seminíferos/citología , Túbulos Seminíferos/crecimiento & desarrollo , Células de Sertoli/citología , Espermatogonias/citología , Espermatogonias/crecimiento & desarrollo , Espermatogonias/metabolismo , Testículo/citología , Testículo/crecimiento & desarrollo
9.
Mol Biol Cell ; 18(7): 2656-66, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17494871

RESUMEN

The microtubule-based motor cytoplasmic dynein/dynactin is a force generator at the kinetochore. It also transports proteins away from kinetochores to spindle poles. Regulation of such diverse functions, however, is poorly understood. We have previously shown that Nudel is critical for dynein-mediated protein transport, whereas mitosin, a kinetochore protein that binds Nudel, is involved in retention of kinetochore dynein/dynactin against microtubule-dependent stripping. Here we demonstrate that Nudel is required for robust localization of dynein/dynactin at the kinetochore. It localizes to kinetochores after nuclear envelope breakdown, depending mostly ( approximately 78%) on mitosin and slightly on dynein/dynactin. Depletion of Nudel by RNA interference (RNAi) or overexpression of its mutant incapable of binding either Lis1 or dynein heavy chain abolishes the kinetochore protein transport and mitotic progression. Similar to mitosin RNAi, Nudel RNAi also leads to increased stripping of kinetochore dynein/dynactin in the presence of microtubules. Taking together, our results suggest a dual role of kinetochore Nudel: it activates dynein-mediated protein transport and, when interacting with both mitosin and dynein, stabilizes kinetochore dynein/dynactin against microtubule-dependent stripping to facilitate the force generation function of the motor.


Asunto(s)
Proteínas Portadoras/metabolismo , División Celular , Citoplasma/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Línea Celular , Polaridad Celular , Proteínas Cromosómicas no Histona/metabolismo , Complejo Dinactina , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Membrana Nuclear/metabolismo , Unión Proteica , Transporte de Proteínas , Interferencia de ARN
10.
J Cell Biol ; 164(4): 557-66, 2004 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-14970193

RESUMEN

Nudel and Lis1 appear to regulate cytoplasmic dynein in neuronal migration and mitosis through direct interactions. However, whether or not they regulate other functions of dynein remains elusive. Herein, overexpression of a Nudel mutant defective in association with either Lis1 or dynein heavy chain is shown to cause dispersions of membranous organelles whose trafficking depends on dynein. In contrast, the wild-type Nudel and the double mutant that binds to neither protein are much less effective. Time-lapse microscopy for lysosomes reveals significant reduction in both frequencies and velocities of their minus end-directed motions in cells expressing the dynein-binding defective mutant, whereas neither the durations of movement nor the plus end-directed motility is considerably altered. Moreover, silencing Nudel expression by RNA interference results in Golgi apparatus fragmentation and cell death. Together, it is concluded that Nudel is critical for dynein motor activity in membrane transport and possibly other cellular activities through interactions with both Lis1 and dynein heavy chain.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Animales , Sitios de Unión , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Línea Celular , Complejo Dinactina , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Lisosomas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Vesículas Transportadoras/metabolismo
11.
Mol Cell Biol ; 23(4): 1239-50, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12556484

RESUMEN

Emerging evidence supports the idea that a signaling pathway containing orthologs of at least mammalian NudE and Nudel, Lis1, and cytoplasmic dynein is conserved for eukaryotic nuclear migration. In mammals, this pathway has profound impact on neuronal migration during development of the central nervous system. Lis1 and dynein are also involved in other cellular functions, such as mitosis. Here we show that Nudel also participates in a subset of dynein function in M phase. Nudel was specifically phosphorylated in M phase in its serine/threonine phosphorylation motifs, probably by Cdc2 and also Erk1 and -2. A fraction of Nudel bound to centrosomes strongly in interphase and localized to mitotic spindles in early M phase. By using mutants incapable of or simulating phosphorylation, we confirmed that phosphorylation of Nudel regulated the cell-cycle-dependent distribution, possibly by increasing its dissociation rate at the microtubule-organizing center. Moreover, phosphorylated Nudel or the phosphorylation-mimicking mutant bound Lis1 more efficiently. We further demonstrated that a Nudel mutant incapable of binding to Lis1 impaired the poleward movement of dynein and hence the dynein-mediated transport of kinetochore proteins to spindle poles along microtubules, a process contributing to inactivation of the spindle checkpoint in mitosis. These results point to the importance of Nudel-Lis1 interaction for the dynein activity in M phase and to a possible role of Nudel phosphorylation as facilitating such interaction. In addition, comparative studies suggest that NudE is also functionally related to its paralog, Nudel.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Proteínas Fúngicas/metabolismo , Huso Acromático/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterasa , Adenosina Trifosfato/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Células Cultivadas , Centrosoma/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mitosis/fisiología , Mutación , Fosforilación , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA