Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Comput Biol ; 20(5): e1012127, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38820562

RESUMEN

Neurons in the primary visual cortex respond selectively to simple features of visual stimuli, such as orientation and spatial frequency. Simple cells, which have phase-sensitive responses, can be modeled by a single receptive field filter in a linear-nonlinear model. However, it is challenging to analyze phase-invariant complex cells, which require more elaborate models having a combination of nonlinear subunits. Estimating parameters of these models is made additionally more difficult by cortical neurons' trial-to-trial response variability. We develop a simple convolutional neural network method to estimate receptive field models for both simple and complex visual cortex cells from their responses to natural images. The model consists of a spatiotemporal filter, a parameterized rectifier unit (PReLU), and a two-dimensional Gaussian "map" of the receptive field envelope. A single model parameter determines the simple vs. complex nature of the receptive field, capturing complex cell responses as a summation of homogeneous subunits, and collapsing to a linear-nonlinear model for simple type cells. The convolutional method predicts simple and complex cell responses to natural image stimuli as well as grating tuning curves. The fitted models yield a continuum of values for the PReLU parameter across the sampled neurons, showing that the simple/complex nature of cells can vary in a continuous manner. We demonstrate that complex-like cells respond less reliably than simple-like cells. However, compensation for this unreliability with noise ceiling analysis reveals predictive performance for complex cells proportionately closer to that for simple cells. Most spatial receptive field structures are well fit by Gabor functions, whose parameters confirm well-known properties of cat A17/18 receptive fields.


Asunto(s)
Biología Computacional , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas , Corteza Visual , Animales , Neuronas/fisiología , Corteza Visual/fisiología , Corteza Visual/citología , Biología Computacional/métodos , Estimulación Luminosa , Campos Visuales/fisiología , Gatos , Corteza Visual Primaria/fisiología
2.
Org Biomol Chem ; 22(23): 4732-4738, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804048

RESUMEN

The selective N-thiolation of indole substrates poses a challenge due to their diminished nucleophilicity at nitrogen. Herein, we present a novel method for the thiolation of the NH group in indole derivatives by using N-arylthio phthalimide as the sulfur source, t-BuOLi as the base and MeCN as the solvent. The process was successfully conducted under transition metal catalyst-free and room temperature conditions with a high product yield and a short reaction time. The developed protocol exhibited excellent regioselectivity and broad substrate tolerance in the preparation of N-thioindoles with diverse functional groups.

3.
Front Immunol ; 15: 1382449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745657

RESUMEN

Background: Acute Respiratory Distress Syndrome (ARDS) or its earlier stage Acute lung injury (ALI), is a worldwide health concern that jeopardizes human well-being. Currently, the treatment strategies to mitigate the incidence and mortality of ARDS are severely restricted. This limitation can be attributed, at least in part, to the substantial variations in immunity observed in individuals with this syndrome. Methods: Bulk and single cell RNA sequencing from ALI mice and single cell RNA sequencing from ARDS patients were analyzed. We utilized the Seurat program package in R and cellmarker 2.0 to cluster and annotate the data. The differential, enrichment, protein interaction, and cell-cell communication analysis were conducted. Results: The mice with ALI caused by pulmonary and extrapulmonary factors demonstrated differential expression including Clec4e, Retnlg, S100a9, Coro1a, and Lars2. We have determined that inflammatory factors have a greater significance in extrapulmonary ALI, while multiple pathways collaborate in the development of pulmonary ALI. Clustering analysis revealed significant heterogeneity in the relative abundance of immune cells in different ALI models. The autocrine action of neutrophils plays a crucial role in pulmonary ALI. Additionally, there was a significant increase in signaling intensity between B cells and M1 macrophages, NKT cells and M1 macrophages in extrapulmonary ALI. The CXCL, CSF3 and MIF, TGFß signaling pathways play a vital role in pulmonary and extrapulmonary ALI, respectively. Moreover, the analysis of human single-cell revealed DCs signaling to monocytes and neutrophils in COVID-19-associated ARDS is stronger compared to sepsis-related ARDS. In sepsis-related ARDS, CD8+ T and Th cells exhibit more prominent signaling to B-cell nucleated DCs. Meanwhile, both MIF and CXCL signaling pathways are specific to sepsis-related ARDS. Conclusion: This study has identified specific gene signatures and signaling pathways in animal models and human samples that facilitate the interaction between immune cells, which could be targeted therapeutically in ARDS patients of various etiologies.


Asunto(s)
Lesión Pulmonar Aguda , Comunicación Celular , Perfilación de la Expresión Génica , Animales , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/inmunología , Ratones , Humanos , Comunicación Celular/inmunología , Transcriptoma , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/genética , Modelos Animales de Enfermedad , Análisis de la Célula Individual , Ratones Endogámicos C57BL , Neutrófilos/inmunología , Neutrófilos/metabolismo , COVID-19/inmunología , COVID-19/genética , Transducción de Señal , Masculino , Macrófagos/inmunología , Macrófagos/metabolismo
4.
Cancer Med ; 12(23): 21519-21530, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37930238

RESUMEN

BACKGROUND: This study aimed to develop a prognostic model for lung adenocarcinoma (LUAD) associated with mitotic cell cycle. The model will predict the probability of survival at different time points and serve as a reference tool to evaluate the effectiveness of LUAD treatment. METHODS: A cohort of 442 patients with LUAD from the gene expression omnibus (GEO) database was randomly divided into a training group (n = 299) and a validation group (n = 99). The least absolute shrinkage and selection operator (LASSO)-COX algorithm was used to reduce the number of predictors based on the clinicopathological and RNA sequencing data to establish mutant characteristics that could predict patient survival. Additionally, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set variation analysis (GSVA), and gene set enrichment analysis (GSEA) analyses were conducted on the mutant characteristics. The performance of the developed nomogram was evaluated using calibration curves and the C-index. RESULTS: The mutant characteristics had prognostic value for LUAD and acted as an independent prognostic factor. The mutant characteristics profile derived from the LASSO-COX algorithm demonstrated a significant association with overall survival in patients with LUAD. Functional annotation based on the mutant score, its involvement in the phase transition of the mitotic cell cycle, and its regulatory processes. The nomogram, which combined the mutant score with clinical factors associated with prognosis, showed robust accuracy in both the training and validation groups. CONCLUSION: This study presents the first individualized model that establishes a mutant score for predicting survival in LUAD. This model can be used as a predictive tool for determining 1-, 2-, 3-, and 5-year survival probabilities in patients with LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Nomogramas , Adenocarcinoma del Pulmón/genética , Algoritmos , División Celular , Neoplasias Pulmonares/genética , Pronóstico
5.
Reprod Biol ; 22(4): 100702, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36327671

RESUMEN

Circular RNA (circRNA) have been shown to exert vital functions in the pathological progressions of ovarian cancer (OC). Herein, this study aimed to investigate the role and mechanisms of circ_0015756 in OC progression. Levels of circ_0015756, microRNA (miR)- 145-5p and phosphoserine aminotransferase 1 (PSAT1) were detected using quantitative real-time polymerase chain reaction, Western blot or immunohistochemistry assays. Cell proliferation, apoptosis, migration and invasion were determined using cell counting kit-8, 5-Ethynyl-2'-Deoxyuridine (Edu) incorporation, flow cytometry, transwell and Western blot assays. The binding interaction between miR-145-5p and circ_0015756 or PSAT1 was confirmed by bioinformatics prediction and dual-luciferase reporter assay. Tumor formation assay in nude mice was performed to determine the tumor growth in vivo. Circ_0015756 was highly expressed in OC tissues and cells. Knockdown of circ_0015756 suppressed cancer cell growth, migration and invasion in vitro, as well as impeded tumor growth in vivo. In a mechanical study, circ_0015756 directly bound to miR-145-5p, and inhibition of miR-145-5p reversed the effects of circ_0015756 knockdown on OC cells. Moreover, miR-145-5p directly targeted PSAT1, and miR-145-5p weakened OC cell growth, migration and invasion via targeting PSAT1. Importantly, further studies confirmed that circ_0015756 could indirectly regulate PSAT1 expression via sponging miR-145-5p. In all, circ_0015756 accelerated OC tumorigenesis through regulating miR-145-5p/PSAT1 axis, providing a new therapeutic target for OC.


Asunto(s)
MicroARNs , Neoplasias Ováricas , ARN Circular , Transaminasas , Animales , Femenino , Humanos , Ratones , Carcinogénesis , Proliferación Celular , Ratones Desnudos , MicroARNs/genética , Neoplasias Ováricas/genética , ARN Circular/genética , Transaminasas/genética
6.
ACS Appl Mater Interfaces ; 13(4): 5460-5468, 2021 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-33471497

RESUMEN

3D monolithic reactor has shown great promise for varied heterogeneous catalysis reactions including water treatment, energy generation and storage, and clean fuel production. As a natural porous material, macroporous wood is regarded as an excellent support for inorganic catalyst due to its abundant polar functional groups and channels. On the other hand, a metal organic framework (MOF) has been widely used as heterogeneous catalyst due to its high specific surface area and large amount of microporosities. Combining macroporous wood and a microporous MOF is expected to produce a high-performance 3D reactor and is demonstrated here for Fischer-Tropsch synthesis. The carbonized MOF/wood reactor retains the original cellular structure with over 180 000 channels/cm2. When being decorated with hexagonal-shaped core-shell Co@C nanoparticles aggregates derived from Co-MOF, the MOF/wood reactor resembles a multi-cylinders reactor for Fischer-Tropsch synthesis. Because of the unique combination of macro- and microporous hierarchical structure, the 3D MOF/wood reactor demonstrates exceptional performance under high gas hourly space velocity (81.2% CO conversion and 48.5% C5+ selectivity at 50 L·h-1·gcat-1 GHSV). This validates that MOF/wood can serve as a multi-cylinders and high-power reactor for catalytic reactions, which is expected to be applicable for environmental and energy applications.

7.
Exp Mol Med ; 50(11): 1-14, 2018 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-30420619

RESUMEN

Oxidative stress-induced mitochondrial dysfunction is implicated in the pathogenesis of intervertebral disc degeneration (IVDD). Sirtuin 3 (SIRT3), a sirtuin family protein located in mitochondria, is essential for mitochondrial homeostasis; however, the role of SIRT3 in the process of IVDD has remained elusive. Here, we explored the expression of SIRT3 in IVDD in vivo and in vitro; we also explored the role of SIRT3 in senescence, apoptosis, and mitochondrial homeostasis under oxidative stress. We subsequently activated SIRT3 using honokiol to evaluate its therapeutic potential for IVDD. We assessed SIRT3 expression in degenerative nucleus pulposus (NP) tissues and oxidative stress-induced nucleus pulposus cells (NPCs). SIRT3 was knocked down by lentivirus and activated by honokiol to determine its role in oxidative stress-induced NPCs. The mechanism by which honokiol affected SIRT3 regulation was investigated in vitro, and the therapeutic potential of honokiol was assessed in vitro and in vivo. We found that the expression of SIRT3 decreased with IVDD, and SIRT3 knockdown reduced the tolerance of NPCs to oxidative stress. Honokiol (10 µM) improved the viability of NPCs under oxidative stress and promoted their properties of anti-oxidation, mitochondrial dynamics and mitophagy in a SIRT3-dependent manner. Furthermore, honokiol activated SIRT3 through the AMPK-PGC-1α signaling pathway. Moreover, honokiol treatment ameliorated IVDD in rats. Our study indicated that SIRT3 is involved in IVDD and showed the potential of the SIRT3 agonist honokiol for the treatment of IVDD.


Asunto(s)
Antioxidantes/farmacología , Compuestos de Bifenilo/farmacología , Degeneración del Disco Intervertebral/metabolismo , Lignanos/farmacología , Sirtuina 3/genética , Animales , Antioxidantes/uso terapéutico , Compuestos de Bifenilo/uso terapéutico , Células Cultivadas , Femenino , Humanos , Degeneración del Disco Intervertebral/tratamiento farmacológico , Lignanos/uso terapéutico , Masculino , Persona de Mediana Edad , Dinámicas Mitocondriales/efectos de los fármacos , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/metabolismo , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Sirtuina 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA