RESUMEN
PURPOSE: To explore the neuroprotective effects of Lutongkeli (LTKL) in traumatic brain injury (TBI) and detect the related mechanism. METHODS: TBI model was established with LTKL administration (2 and 4 g/kg/d, p.o.). Motor function of rats was examined by Rotarod test. Nissl staining was used to show neuron morphology. Furthermore, the disease-medicine common targets were obtained with the network pharmacology and analyzed with Kyoto Encyclopedia of Genes and Genomes. Lastly, the predicted targets were validated by real-time polymerase chain reaction. RESULTS: After LTKL administration, neural behavior was significantly improved, and the number of spared neurons in brain was largely increased. Moreover, 68 bioactive compounds were identified, corresponding to 148 LTKL targets; 2,855 genes were closely associated with TBI, of which 87 overlapped with the LTKL targets and were considered to be therapeutically relevant. Functional enrichment analysis suggested LTKL exerted its pharmacological effects in TBI by modulating multiple pathways including apoptosis, inflammation, etc. Lastly, we found LTKL administration could increase the mRNA level of Bcl-2 and decrease the expression of Bax and caspase-3. CONCLUSIONS: This study reported the neuroprotective effect of LTKL against TBI is accompanied with anti-apoptosis mechanism, which provides a scientific explanation for the clinical application of LTKL in the treatment of TBI.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Fármacos Neuroprotectores , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Caspasa 3 , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Proteínas Proto-Oncogénicas c-bcl-2 , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Proteína X Asociada a bcl-2RESUMEN
Purpose: To explore the neuroprotective effects of Lutongkeli (LTKL) in traumatic brain injury (TBI) and detect the related mechanism. Methods: TBI model was established with LTKL administration (2 and 4 g/kg/d, p.o.). Motor function of rats was examined by Rotarod test. Nissl staining was used to show neuron morphology. Furthermore, the disease-medicine common targets were obtained with the network pharmacology and analyzed with Kyoto Encyclopedia of Genes and Genomes. Lastly, the predicted targets were validated by real-time polymerase chain reaction. Results: After LTKL administration, neural behavior was significantly improved, and the number of spared neurons in brain was largely increased. Moreover, 68 bioactive compounds were identified, corresponding to 148 LTKL targets; 2,855 genes were closely associated with TBI, of which 87 overlapped with the LTKL targets and were considered to be therapeutically relevant. Functional enrichment analysis suggested LTKL exerted its pharmacological effects in TBI by modulating multiple pathways including apoptosis, inflammation, etc. Lastly, we found LTKL administration could increase the mRNA level of Bcl-2 and decrease the expression of Bax and caspase-3. Conclusions: This study reported the neuroprotective effect of LTKL against TBI is accompanied with anti-apoptosis mechanism, which provides a scientific explanation for the clinical application of LTKL in the treatment of TBI.
Asunto(s)
Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Fármacos Neuroprotectores/administración & dosificación , Lesiones Traumáticas del Encéfalo/terapia , Ratas Sprague-Dawley , Medicina Tradicional ChinaRESUMEN
OBJECTIVE: Infections of snake bite wounds by Shewanella are rarely discussed in the medical literature. This study aims to characterize the presentation and management of Shewanella infections in snake bite wounds. METHOD: We retrospectively investigated the microbiology, clinical features, and outcomes of patients with Shewanella infected snake bite wounds admitted to a tertiary medical center from January 1998 to December 2009. RESULTS: Ten patients with Shewanella-infected snake bite wounds were identified. All of the snake bites were caused by cobras. The majority of patients had moderate to severe local envenomation and polymicrobial infections. Shewanella isolates are susceptible to ampicillin-sulbactam, piperacillin-tazobactam, third-and fourth-generation cephalosporins, carbapenems, aminoglycosides, and quinolones but are resistant to penicillin and cefazolin. All of the patients examined had favorable outcomes. CONCLUSION: It is recommended that Shewanella infection be considered in snake bite patients, especially when patients present with moderate to severe local envenomation.
Asunto(s)
Elapidae , Infecciones por Bacterias Gramnegativas/microbiología , Shewanella , Mordeduras de Serpientes/microbiología , Infección de Heridas/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antibacterianos/uso terapéutico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Infección de Heridas/tratamiento farmacológicoRESUMEN
OBJECTIVE: Infections of snake bite wounds by Shewanella are rarely discussed in the medical literature. This study aims to characterize the presentation and management of Shewanella infections in snake bite wounds. METHOD: We retrospectively investigated the microbiology, clinical features, and outcomes of patients with Shewanella infected snake bite wounds admitted to a tertiary medical center from January 1998 to December 2009. RESULTS: Ten patients with Shewanella-infected snake bite wounds were identified. All of the snake bites were caused by cobras. The majority of patients had moderate to severe local envenomation and polymicrobial infections. Shewanella isolates are susceptible to ampicillin-sulbactam, piperacillin-tazobactam, third-and fourthgeneration cephalosporins, carbapenems, aminoglycosides, and quinolones but are resistant to penicillin and cefazolin. All of the patients examined had favorable outcomes. CONCLUSION: It is recommended that Shewanella infection be considered in snake bite patients, especially when patients present with moderate to severe local envenomation.
Asunto(s)
Adulto , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Persona de Mediana Edad , Elapidae , Infecciones por Bacterias Gramnegativas/microbiología , Shewanella , Mordeduras de Serpientes/microbiología , Infección de Heridas/microbiología , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Infección de Heridas/tratamiento farmacológicoRESUMEN
There are very few microbiological data on wound infections following snakebites. The objective of this study was to investigate the treatment of secondary infection following snakebites in central Taiwan. Microbiological data and antibiotic sensitivity of wound cultures were retrospectively analyzed from December 2005 to October 2007 in a medical center in central Taiwan. A total of 121 snakebite patients participated in the study. Forty-nine (40.5%) subjects were bitten by cobra (Naja atra); 34 of them had secondary infection, and 24 of them (70.6%) needed surgical intervention. Cobra bites caused more severe bacterial infection than other snakebites. Morganella morganii was the most common pathogen, followed by Aeromonas hydrophila and Enterococcus. Gram-negative bacteria were susceptible to amikacin, trimethoprim/sulfamethoxazole, cefotaxime, cefepime, ciprofloxacin, and piperacillin/tazobactam. Enterococcus were susceptible to ampicillin, gentamicin, penicillin and vancomycin. It is reasonable to choose piperacillin/tazobactam, quinolone, second- or third-generation cephalosporin for empirical therapy following snakebite. Surgical intervention should be considered for invasive soft tissue infections.(AU)
Asunto(s)
Humanos , Animales , Mordeduras de Serpientes/inmunología , Mordeduras de Serpientes/microbiología , Infección de Heridas/patología , Infección de Heridas/terapiaRESUMEN
There are very few microbiological data on wound infections following snakebites. The objective of this study was to investigate the treatment of secondary infection following snakebites in central Taiwan. Microbiological data and antibiotic sensitivity of wound cultures were retrospectively analyzed from December 2005 to October 2007 in a medical center in central Taiwan. A total of 121 snakebite patients participated in the study. Forty-nine (40.5%) subjects were bitten by cobra (Naja atra); 34 of them had secondary infection, and 24 of them (70.6%) needed surgical intervention. Cobra bites caused more severe bacterial infection than other snakebites. Morganella morganii was the most common pathogen, followed by Aeromonas hydrophila and Enterococcus. Gram-negative bacteria were susceptible to amikacin, trimethoprim/sulfamethoxazole, cefotaxime, cefepime, ciprofloxacin, and piperacillin/tazobactam. Enterococcus were susceptible to ampicillin, gentamicin, penicillin and vancomycin. It is reasonable to choose piperacillin/tazobactam, quinolone, second- or third-generation cephalosporin for empirical therapy following snakebite. Surgical intervention should be considered for invasive soft tissue infections.(AU)