RESUMEN
The aim of this study was to explore the therapeutic effect of Pleurotus eryngii cellulose on experimental fatty liver in rats. Rats were fed high-fat fodder to establish a rat fatty liver model, and were then fed different concentrations of Pleurotus eryngii cellulose for six weeks. Lipitor was used as a positive control. Measured levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and total triglyceride (TG); the activity of malondialdehyde (MDA), superoxide dismutase (SOD), hepatic lipase (HL), and lipoprotein lipase; and liver histopathological changes. Successfully established rat fatty liver model after feeding high-fat fodder for one week. A diet of P. eryngii cellulose for six weeks significantly reduced ALT, AST, TC, and TG levels in rat serum (P < 0.01); TC and AST levels in P. eryngii cellulose high-dose group and Lipitor group were not significantly different from those of the control (P > 0.05). SOD activity increased significantly, while MDA and HL activity decreased (P < 0.05); fatty degeneration and fat accumulation both decreased in hepatic tissue. Hepatic protection of P. eryngii cellulose showed dose-related effect. P. eryngii cellulose can affect lipid metabolism, having therapeutic effects on fatty liver in rats.
Asunto(s)
Celulosa/farmacología , Hígado Graso/tratamiento farmacológico , Metabolismo de los Lípidos/efectos de los fármacos , Pleurotus , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Celulosa/uso terapéutico , Colesterol/sangre , Modelos Animales de Enfermedad , Hígado Graso/sangre , Hígado/efectos de los fármacos , Masculino , Ratas , Triglicéridos/sangreRESUMEN
The use of simple sequence repeats (SSRs), or microsatellites, as genetic markers has become popular due to their abundance and variation in length among individuals. In this study, we investigated linkage groups (LGs) in the woodland strawberry (Fragaria vesca) and demonstrated variation in the abundances, densities, and relative densities of mononucleotide, dinucleotide, and trinucleotide repeats. Mononucleotide, dinucleotide, and trinucleotide repeats were more common than longer repeats in all LGs examined. Perfect SSRs were the predominant SSR type found and their abundance was extremely stable among LGs and chloroplasts. Abundances of mononucleotide, dinucleotide, and trinucleotide repeats were positively correlated with LG size, whereas those of tetranucleotide and hexanucleotide SSRs were not. Generally, in each LG, the abundance, relative abundance, relative density, and the proportion of each unique SSR all declined rapidly as the repeated unit increased. Furthermore, the lengths and frequencies of SSRs varied among different LGs.