Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Life Sci Space Res (Amst) ; 42: 117-132, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067983

RESUMEN

Microgravity, as a unique hazardous factor encountered in space, can induce a series of harmful effects on living organisms. The impact of microgravity on the pivotal functional gene modules stemming from gene enrichment analysis via the regulation of miRNAs is not fully illustrated. To explore the microgravity-induced alterations in critical functional gene modules via the regulation of miRNAs, in the present study, we proposed a novel bioinformatics algorithm for the integrated analysis of miRNAome and transcriptome from short-term space-flown C. elegans. The samples of C. elegans were exposed to two space conditions, namely spaceflight (SF) and spaceflight control (SC) onboard the International Space Station for 4 days. Additionally, the samples of ground control (GC) were included for comparative analysis. Using the present algorithm, we constructed regulatory networks of functional gene modules annotated from differentially expressed genes (DEGs) and their associated regulatory differentially expressed miRNAs (DEmiRNAs). The results showed that functional gene modules of molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathway were facilitated by 25 down-regulated DEmiRNAs (e.g., cel-miR-792, cel-miR-65, cel-miR-70, cel-lsy-6, cel-miR-796, etc.) in the SC vs. GC groups, whereas these modules were inhibited by 13 up-regulated DEmiRNAs (e.g., cel-miR-74, cel-miR-229, cel-miR-70, cel-miR-249, cel-miR-85, etc.) in the SF vs. GC groups. These findings indicated that microgravity could significantly alter gene expression patterns and their associated functional gene modules in short-term space-flown C. elegans. Additionally, we identified 34 miRNAs as post-transcriptional regulators that modulated these functional gene modules under microgravity conditions. Through the experimental verification, our results demonstrated that microgravity could induce the down-regulation of five critical functional gene modules (i.e., molting cycle, defense response, fatty acid metabolism, lysosome, and longevity regulating pathways) via the regulation of miRNAs in short-term space-flown C. elegans.


Asunto(s)
Caenorhabditis elegans , Redes Reguladoras de Genes , MicroARNs , Vuelo Espacial , Transcriptoma , Ingravidez , Animales , Caenorhabditis elegans/genética , MicroARNs/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica
2.
Chemosphere ; 351: 141148, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211791

RESUMEN

During space exploration, space radiation is widely recognized as an inescapable perilous stressor, owing to its capacity to induce genomic DNA damage and escalate the likelihood of detrimental health outcomes. Rapid and reliable estimation of space radiation dose holds paramount significance in accurately assessing the health risks associated with spaceflight. However, the identification of space radiation-responsive genes, with their potential to serve as early indicators for diagnosing radiation dose associated with spaceflight, continues to pose a significant challenge. In this study, based on the evolutionarily conserved mechanism of radiation response, an in silico analysis method of homologous comparison was performed to identify the Caenorhabditis elegans orthologues of human radiation-responsive genes with possible roles in the major processes of response to radiation, and thereby to explore the potential C. elegans radiation-responsive genes for evaluating the levels of space radiation exposure. The results showed that there were 60 known C. elegans radiation-responsive genes and 211 C. elegans orthologues of human radiation-responsive genes implicated in the major processes of response to radiation. Through an investigation of all available transcriptomic datasets obtained from space-flown C. elegans, it was observed that the expression levels of the majority of these putative C. elegans radiation-responsive genes identified in this study were notably changed across various spaceflight conditions. Furthermore, this study indicated that within the identified genes, 19 known C. elegans radiation-responsive genes and 40 newly identified C. elegans orthologues of human radiation-responsive genes exhibited a remarkable positive correlation with the duration of spaceflight. Moreover, a noteworthy presence of substantial multi-collinearity among the majority of these identified genes was observed. This observation lends support to the possibility of treating each identified gene as an independent indicator of radiation dose in space. Ultimately, a subset of 15 potential radiation-responsive genes was identified, presenting the most promising indicators for estimation of radiation dose associated with spaceflight in C. elegans.


Asunto(s)
Caenorhabditis elegans , Vuelo Espacial , Animales , Humanos , Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Daño del ADN , Dosis de Radiación
3.
Life Sci Space Res (Amst) ; 37: 25-38, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37087176

RESUMEN

During spaceflight, multiple unique hazardous factors, particularly microgravity and space radiation, can induce different types of DNA damage, which pose a constant threat to genomic integrity and stability of living organisms. Although organisms have evolved different kinds of conserved DNA repair pathways to eliminate this DNA damage on Earth, the impact of space microgravity on the expressions of these DNA repair genes and their regulatory miRNAs has not been fully explored. In this study, we integrated all existing datasets, including both transcriptional and miRNA microarrays in wild-type (WT) Caenorhabditis elegans that were exposed to the treatments of spaceflight (SF), spaceflight control with a 1g centrifugal device (SC), and ground control (GC) in three space experiments with the periods of 4, 8 and 16.5 days. The results of principal component analysis showed the gene expression patterns for five major DNA repair pathways (i.e., non-homologous end joining (NHEJ), homologous recombination (HR), mismatch repair (MMR), nucleotide excision repair (NER), and base excision repair (BER)) were well separated and clustered between SF/GC and SC/GC treatments after three spaceflights. In the 16.5-days space experiment, we also selected the datasets of dys-1 mutant and ced-1 mutant of C. elegans, which respectively presented microgravity-insensitivity and radiosensitivity. Compared to the WT C. elegans flown in the 16.5-days spaceflight, the separation distances between SF and SC samples were significantly reduced in the dys-1 mutant, while greatly enhanced in the ced-1 mutant for five DNA repair pathways. By comparing the results of differential expression analysis in SF/GC versus SC/GC samples, we found the DNA repair genes annotated in the pathways of BER and NER were prominently down-regulated under microgravity during both the 4- and 8-days spaceflights. While, under microgravity, the genes annotated in MMR were dominatingly up-regulated during the 4-days spaceflight, and those annotated in HR were mainly up-regulated during the 8-days spaceflight. And, most of the DNA repair genes annotated in the pathways of BER, NER, MMR, and HR were up-regulated under microgravity during the 16.5-days spaceflight. Using miRNA-mRNA integrated analysis, we determined the regulatory networks of differentially expressed DNA repair genes and their regulatory miRNAs in WT C. elegans after three spaceflights. Compared to GC conditions, the differentially expressed miRNAs were analyzed under SF and SC treatments of three spaceflights, and some altered miRNAs that responded to SF and SC could regulate the expressions of corresponding DNA repair genes annotated in different DNA repair pathways. In summary, these findings indicate that microgravity can significantly alter the expression patterns of DNA repair genes and their regulatory miRNAs in space-flown C. elegans. The alterations of the expressions of DNA repair genes and the dominating DNA repair pathways under microgravity are possibly related to the spaceflight period. In addition, the key miRNAs are identified as the post-transcriptional regulators to regulate the expressions of various DNA repair genes under microgravity. These altered miRNAs that responded to microgravity can be implicated in regulating diverse DNA repair processes in space-flown C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans , MicroARNs , Vuelo Espacial , Ingravidez , Animales , Caenorhabditis elegans/genética , MicroARNs/genética , Reparación del ADN/genética , Distrofina/genética , Proteínas de Caenorhabditis elegans/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA