Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
1.
Sci Total Environ ; 952: 175894, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222817

RESUMEN

Understanding the dynamics of sedimentary organic carbon (SOC) in the productive continental marginal sea surrounding Antarctica is crucial for elucidating the effect of this sea on the global carbon cycle. We analyzed 31 surface sediment samples and eight sediment cores collected from Prydz Bay (PB) and the adjacent basin area. The element and stable isotope compositions, grain size compositions, and biogenic silica and lithogenic minerals of these samples were used to evaluate the spatial variations in the sources, transport mechanisms, and preservation patterns of SOC, with a particular focus on the efficiency of the biological carbon pump (BCP). Our findings reveal that the SOC originated from mixed marine/terrestrial sources. The δ13C values were higher in the Prydz Bay Gyre (PBG) region than in the open sea area. Biogenic matter-rich debris, associated with fine-grained particles (silt and clay), was concentrated in the PBG, while abiotic ice-rafted debris and coarse-grained particles were preferentially deposited in the bank and ice shelf front regions. Lithogenic matter predominated in the basin sediments. The annual accumulation rate of SOC in PB ranged from 1.6 to 6.2 g·m-2·yr-1 (mean 4.2 ± 1.9 g·m-2·yr-1), and the rates were higher in the PBG than in the ice shelf front region. Estimates based on our tentative box model suggest that the efficiency of the BCP, which refers to the proportion of surface-produced organic carbon successfully transferred to deep waters, is approximately 5.7 % in PB, surpassing the global average (∼0.8 %) and the efficiencies reported for other polar environments. Furthermore, our calculations indicate that the SOC preservation efficiency (the ratio of preserved to initially deposited organic carbon in sediments) in PB is approximately 79 % ± 20 %, underscoring the significant carbon sequestration potential within PB. The results of this study have important implications for the effects of sediment dynamics on the carbon cycle in the sea surrounding Antarctica.

2.
Inorg Chem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39268867

RESUMEN

A zinc-organic hybrid (1) with multifunctional room temperature phosphorescence (RTP) was synthesized. 1 presents light/force-sensitive RTP properties due to the photochromic behavior from gray to light yellow and the transition from crystalline to amorphous state, respectively. Furthermore, inkless printing and information encryption models were successfully constructed to prove their widespread application prospect.

3.
Anal Methods ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269217

RESUMEN

By means of their specific interactions with different metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. In view of natural metallopeptides, scientists have proposed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing various sensors. However, the design of new peptide ligands requires a deep understanding of the structures, assembly properties, and dynamic behaviors of such peptides. This review briefly describes detection strategies of metal ions via coordination to the binding sites in peptides. The principles and functions of sensing systems are described as well. We also highlight some examples of a metal-induced peptide self-assembly with relevance to biotechnology applications.

4.
Updates Surg ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235694

RESUMEN

Worldwide use of robotic-assisted hepatectomy has increased dramatically over the past two decades. The role of robotic liver surgery is still controversial, especially with respect to its long-term oncological outcomes in treating early-stage hepatocellular carcinoma (HCC). The Glissonean approach is a fundamental technique for anatomical resection using open and laparoscopic liver surgery. To our knowledge, there have been few reports on purely robotic anatomical segmentectomy 7 for HCC using the Glissonean approach have been described. The present study describes the technical details and surgical outcomes of totally robotic segmentectomy 7 using the Glissonean approach. Fourteen patients with HCC limited to segment 7 underwent segmentectomy 7 from January 2019 through April 2023 in our hospital. The surgical techniques, peri-operative, and oncological outcomes were analyzed. Purely robotic anatomical segmentectomy 7 using the Glissonean approach was safe and feasible with the technology described herein in all of the 14 patients. The peri-operative and oncological outcomes were better and/or comparable with those of other similar hepatic resections using open approach and/or laparoscopic approach. The median follow-up time was 18 months. Intrahepatic recurrence occurred in 2 (14.3%) patient within one year following surgery. The 3-year overall survival rate was 81%. Although technically challenging, the purely robotic segmentectomy 7 could be performed safely and simultaneously with oncological radicality using the Glissonean approach.

5.
Adv Sci (Weinh) ; : e2403064, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088351

RESUMEN

Ischemic stroke (IS) is a leading cause of morbidity and mortality globally and triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia in the central nervous system play dual roles in neuroprotection and responding to ischemic brain damage. Here, an IS model is employed to determine the involvement of microglia in phagocytosis at excitatory synapses. Additionally, the effects of pharmacological depletion of microglia are investigated on improving neurobehavioral outcomes and mitigating brain injury. RNA sequencing of microglia reveals an increase in phagocytosis-associated pathway activity and gene expression, and C-type lectin domain family 7 member A (Clec7a) is identified as a key regulator of this process. Manipulating microglial Clec7a expression can potentially regulate microglial phagocytosis of synapses, thereby preventing synaptic loss and improving neurobehavioral outcomes after IS. It is further demonstrat that microglial Clec7a interacts with neuronal myeloid differentiation protein 2 (MD2), a key molecule mediating poststroke neurological injury, and propose the novel hypothesis that MD2 is a ligand for microglial Clec7a. These findings suggest that microglial Clec7a plays a critical role in mediating synaptic phagocytosis in a mouse model of IS, suggesting that Clec7a may be a therapeutic target for IS.

6.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3736-3748, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099348

RESUMEN

To explore the mutagenic effect of the space environment on Pueraria montana and select the elite germplasm with good growth conditions and high isoflavone content, this study observed the agronomic traits, determined the flower isoflavone content, and labeled amplified fragment length polymorphism(AFLP) fluorescent molecular markers of 79 P. montana plants exposed to space mutagenesis(SP1 group) and 10 control plants of P. montana(CK group). Excel 2019, SPSS 25.0, NTSYSpc-2.11F, and Popgen 32 were employed to analyze the genetic diversity and perform the cluster analysis. The results showed that the SP1 group presented changed leaf hairy attitude and flower structure and higher CV and H' of quantitative traits than the CK group. The cluster analysis screened out five plants in the SP1 group. Ten P. montana plants in the SP1 group had higher content of 6″-O-xylosyl-tectoridin and tectoridin in the flowers than the control group, with the total content of both exceeding 11%. After clustering, 9 plants in the SP1 group were separated. Nine pairs of polymorphic primers were screened out frrom 64 pairs of primers. A total of 1 620 polymorphic loci were detected, with the average percentage of polymorphic loci(PPL) of 83.33%. The average Nei's gene diversity index(H) and Shannon's information index(I) were 0.192 2 and 0.305 2, respectively. After clustering, 4 plants in the SP1 group were screened out. According to the above results, plants No. 30, No. 66, and No. 89 in the SP1 group were subjected to greater mutagenic effect by the space environment and presented better growth and higher flower isoflavone content. Moreover, plant No. 30 showed the flower structure variation and flower weight two times of that in the CK group. These plants can be used as key materials for the subsequent experiments.


Asunto(s)
Flores , Variación Genética , Pueraria , Pueraria/genética , Pueraria/química , Pueraria/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Flores/química , Isoflavonas , Mutagénesis , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados
7.
Cell Mol Life Sci ; 81(1): 307, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048814

RESUMEN

Natural killer cells (NK) are the "professional killer" of tumors and play a crucial role in anti-tumor immunotherapy. NK cell desensitization is a key mechanism of tumor immune escape. Dysregulated NKG2D-NKG2DL signaling is a primary driver of this desensitization process. However, the factors that regulate NK cell desensitization remain largely uncharacterized. Here, we present the first report that circular RNA circARAP2 (hsa_circ_0069396) is involved in the soluble MICA (sMICA)-induced NKG2D endocytosis in the NK cell desensitization model. CircARAP2 was upregulated during NK cell desensitization and the loss of circARAP2 alleviated NKG2D endocytosis and NK cell desensitization. Using Chromatin isolation by RNA purification (ChIRP) and RNA pull-down approaches, we identified that RAB5A, a molecular marker of early endosomes, was its downstream target. Notably, transcription factor CTCF was an intermediate functional partner of circARAP2. Mechanistically, we discovered that circARAP2 interacted with CTCF and inhibited the recruitment of CTCF-Polycomb Repressive Complex 2 (PRC2) to the promoter region of RAB5A, thereby erasing histone H3K27 and H3K9 methylation suppression to enhance RAB5A transcription. These data demonstrate that inhibition of circARAP2 effectively alleviates sMICA-induced NKG2D endocytosis and NK cell desensitization, providing a novel target for therapeutic intervention in tumor immune evasion.


Asunto(s)
Factor de Unión a CCCTC , Antígenos de Histocompatibilidad Clase I , Células Asesinas Naturales , ARN Circular , Proteínas de Unión al GTP rab5 , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , ARN Circular/genética , ARN Circular/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rab5/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Endocitosis , Endosomas/metabolismo , Ratones , Animales
8.
Cell Rep ; 43(8): 114548, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39052482

RESUMEN

Human cortical neurons (hCNs) exhibit high dendritic complexity and synaptic density, and the maturation process is greatly protracted. However, the molecular mechanism governing these specific features remains unclear. Here, we report that the hominoid-specific gene TBC1D3 promotes dendritic arborization and protracts the pace of synaptogenesis. Ablation of TBC1D3 in induced hCNs causes reduction of dendritic growth and precocious synaptic maturation. Forced expression of TBC1D3 in the mouse cortex protracts synaptic maturation while increasing dendritic growth. Mechanistically, TBC1D3 functions via interaction with MICAL1, a monooxygenase that mediates oxidation of actin filament. At the early stage of differentiation, the TBC1D3/MICAL1 interaction in the cytosol promotes dendritic growth via F-actin oxidation and enhanced actin dynamics. At late stages, TBC1D3 escorts MICAL1 into the nucleus and downregulates the expression of genes related with synaptic maturation through interaction with the chromatin remodeling factor ATRX. Thus, this study delineates the molecular mechanisms underlying human neuron development.


Asunto(s)
Proteínas de Microfilamentos , Transducción de Señal , Sinapsis , Humanos , Animales , Sinapsis/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Actinas/metabolismo , Neuronas/metabolismo , Dendritas/metabolismo , ADN Helicasas/metabolismo , Neurogénesis , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Diferenciación Celular , Calponinas
9.
Research (Wash D C) ; 7: 0411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974011

RESUMEN

Molecular materials possessing switchable magneto-optical properties are of great interest due to their potential applications in spintronics and molecular devices. However, switching their photoluminescence (PL) and single-molecule magnet (SMM) behavior via light-induced structural changes still constitutes a formidable challenge. Here, a series of cubane structures were synthesized via self-assembly of 9-anthracene carboxylic acid (HAC) and rare-earth ions. All complexes exhibited obvious photochromic phenomena and complete PL quenching upon Xe lamp irradiation, which were realized via the synergistic effect of photogenerated radicals and [4 + 4] photocycloaddition of the AC components. The quenched PL showed the largest fluorescence intensity change (99.72%) in electron-transfer photochromic materials. A reversible decoloration process was realized via mechanical grinding, which is unexpectedly in the electron-transfer photochromic materials. Importantly, an SMM behavior of the Dy analog was observed after room-temperature irradiation due to the photocycloaddition of AC ligands and the photogenerated stable radicals changed the electrostatic ligand field and magnetic coupling. Moreover, based on the remarkably photochromic and photoluminescent properties of these compounds, 2 demos were applied to support their application in information anti-counterfeiting and inkless printing. This work, for the first time utilizing the simultaneous modulation of photocycloaddition and photogenerated radicals in one system, realizes complete PL quenching and light-induced SMM behavior, providing a dynamical switch for the construction of multifunctional polymorphic materials with optical response and optical storage devices.

10.
J Ethnopharmacol ; 335: 118638, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39084272

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zhizichi decoction (ZZCD) is a traditional Chinese medicine formula that consists of Gardenia jasminoides J.Ellis (GJ) and Semen Sojae Praeparatum. It is used to treat insomnia and emotion-related disorders, such as irritability. Previous studies have found that GJ has a rapid antidepressant effect. The study found that ZZCD is safer than GJ at the same dosage. Consequently, ZZCD is a superior drug with quicker antidepressant effects than GJ. The rapid antidepressant effects of ZZCD were examined in this study, along with the components that make up this effect. It was determined that the activation of prefrontal Pituitary Adenylate Cyclase Activating Polypeptide (PACAP)/Vasoactive Intestinal Polypeptide (VIP) is essential for ZZCD's rapid antidepressant effects. AIM: This study identified and discussed the rapid antidepressant effects and biological mechanisms of ZZCD. MATERIALS AND METHODS: The tail suspension test (TST) and the forced swimming test (FST) were used to screen the effective dosage of ZZCD (0.67 g/kg, 1 g/kg, 4 g/kg). The effective dosage of ZZCD (1 g/kg) was tested in the TST conducted on Institute of Cancer Research (ICR) mice that were treated with lipopolysaccharide (LPS) at a concentration of 0.1 mg/mL. To confirm the expression of c-Fos, PACAP, and VIP in the prefrontal cortex (PFC), immunohistochemistry tests were conducted on mice following intragastric injection of ZZCD. Chemical characterization analysis and HPLC quality control analysis were conducted using UHPLC-Q-Obitrap-HRMS and chromatographic analysis. RESULTS: The results showed that an acute administration of ZZCD (1 g/kg) decreased the immobility time of Kunming (KM) mice in TST and FST. Depressive behaviors in TST-induced ICR mice treated with LPS (0.1 mg/mL) were reversed by ZZCD (1 g/kg). The results of immunohistochemical experiments showed that ZZCD (1 g/kg) activated neurons in the PFC and PACAP/VIP in the PFC. In this study, 22 substances in ZZCD were identified. Five primary distinctive fingerprint peaks-geniposide, genistin, genipin-1-ß-D-gentiobioside, glycitin, and daidzin-were found among the ten common peaks. CONCLUSION: ZZCD (1 g/kg) had significant rapid antidepressant effects. PACAP/VIP in the PFC was found to mediate the rapid antidepressant effects of ZZCD.


Asunto(s)
Antidepresivos , Medicamentos Herbarios Chinos , Suspensión Trasera , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Corteza Prefrontal , Péptido Intestinal Vasoactivo , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Antidepresivos/farmacología , Medicamentos Herbarios Chinos/farmacología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Masculino , Ratones , Depresión/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Natación , Relación Dosis-Respuesta a Droga , Ratones Endogámicos ICR , Modelos Animales de Enfermedad , Animales no Consanguíneos
11.
Cell Death Discov ; 10(1): 323, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009585

RESUMEN

Adipose tissue, aside from adipocytes, comprises various abundant immune cells. The accumulation of low-grade chronic inflammation in adipose tissue serves as a primary cause and hallmark of insulin resistance. In this study, we investigate the physiological roles of FADD in adipose tissue inflammation, adipogenesis, and adipocyte survival. High levels of Fadd mRNA were observed in mitochondrial-rich organs, particularly brown adipose tissue. To explore its metabolic functions, we generated global Fadd knockout mice, resulting in embryonic lethality, while heterozygous knockout (Fadd+/-) mice did not show any significant changes in body weight or composition. However, Fadd+/- mice exhibited reduced respiratory exchange ratio (RER) and serum cholesterol levels, along with heightened global and adipose inflammatory responses. Furthermore, AT masses and expression levels of adipogenic and lipogenic genes were decreased in Fadd+/- mice. In cellular studies, Fadd inhibition disrupted adipogenic differentiation and suppressed the expression of adipogenic and lipogenic genes in cultured adipocytes. Additionally, Fadd overexpression caused adipocyte death in vitro with decreased RIPK1 and RIPK3 expression, while Fadd inhibition downregulated RIPK3 in iWAT in vivo. These findings collectively underscore the indispensable role of FADD in adipose inflammation, adipogenesis, and adipocyte survival.

12.
J Org Chem ; 89(13): 9597-9608, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38885461

RESUMEN

An ambient-light-promoted stereospecific olefinic C(sp2)-S bond construction of thioacids and 1,1-diarylethenes has been demonstrated, affording various (Z)-vinyl thioesters in 51-85% yields under solvent- and catalyst-free conditions. Mechanistic studies indicated that the formation of thioacid-olefin complexes is responsible for generating a carbonyl thiyl radical and dioxygen in the air participates in the reaction and functions as a traceless reagent. Moreover, synthetic applications have been demonstrated by the gram scale synthesis and aggregation-induced emission property of representative compound 3i.

13.
Asian J Surg ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38942632
14.
Asian J Surg ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38937236
15.
Endocrine ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861116

RESUMEN

AIM: To analysis the change of electrogastrogram (EGG) in patients with type 2 diabetes mellitus (T2DM), and evaluate the prevalence of abnormal gastric electrical rhythm (AGER) and its relative influencing factors. METHODS: A total of 65 patients with T2DM hospitalized at the Second Affiliated Hospital of Soochow University from Dec. 2020 to Dec. 2021 were included in the cross-sectional study. General information, clinical data, and medical history data of all study subjects, including name, gender, body mass index (BMI), duration of diabetes, anti-diabetic therapies, high blood pressure (HBP) history, smoking history, and medication history, were completely collected. The results of laboratory tests, including biochemical parameters, glycosylated hemoglobin (HbA1c), fasting C-peptide, 2 h postprandial C-peptide, 24 h urine total protein (24 hUTP), urine microalbumin creatinine ratio (UACR) and estimated glomerular filtration rate (eGFR) were recorded. EGG, Gastroparesis Cardinal Symptom Index (GCSI), gastric emptying ultrasound, fundus examination, carotid artery ultrasonography, cardiac autonomic function test, heart rate variability (HRV) were all examined and recorded as well. According to the results of EGG, the subjects were divided into normal gastric electrical rhythm (NGER) group and abnormal gastric electrical rhythm (AGER) group. RESULTS: (1) Fasting blood glucose (FBG), HbA1c, the presence of diabetic peripheral neuropathy (DPN) and diabetic cardiac autonomic neuropathy (DCAN) were significantly higher in the AGER group (p < 0.05). Low frequency (LF) and high frequency (HF), the indicators of HRV, were significantly lower in the AGER group (p < 0.05). In addition, the prevalence of feeling excessively full after meals, loss of appetite, and stomach or belly visibly larger after meals of gastrointestinal symptoms of gastroparesis were significantly higher in the AGER group (p < 0.05). Multiple logistic regression analysis showed that FBG and the prevalence of DCAN were the independent risk factors. CONCLUSION: AGER was associated with high FBG and the presence of DCAN. EGG examination is recommended for patients with gastrointestinal symptoms and clues of DCAN.

16.
Huan Jing Ke Xue ; 45(6): 3284-3296, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897751

RESUMEN

Land-use changes are an important factor affecting the change in carbon storage in terrestrial ecosystems. Exploring the relationship between land-use changes and carbon storage provides reliable data support for optimizing regional land-use structure and maintaining regional carbon balance. Taking Jiangxi Province as an example, we first analyzed the land-use changes; then simulated the land-use pattern under three scenarios (i.e., natural development, ecological priority, and economic development scenarios) in 2030 based on the PLUS model; and finally estimated the carbon storage change in the past (i.e., 1990-2020) and future periods (i.e., three scenarios in 2030) using the InVEST model, analyzed the spatial-temporal characteristics, and proposed the corresponding suggestions. The results showed:① The carbon storage in Jiangxi Province showed a downward trend from 1990 to 2020, with a total reduction of 4.58×107 t. The increase in the water bodies and construction land and the decrease in cultivated land, woodland, grassland, and unused land was the major cause. ② The carbon storage under natural development, ecological priority, and economic development scenarios in Jiangxi Province in 2030 were 2.20×109, 2.24×109 and 2.19×109 t, respectively. ③ The carbon storage under the three scenarios showed similar spatial characteristics, wherein the high carbon storage was distributed in northern, northwest, and western regions, and the low carbon storage was distributed near the central region. These results can provide data support for future land spatial planning and improving the carbon storage of terrestrial ecosystems in Jiangxi Province.

18.
Ren Fail ; 46(1): 2350235, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38721924

RESUMEN

Increasing evidence suggests that peritoneal fibrosis induced by peritoneal dialysis (PD) is linked to oxidative stress. However, there are currently no effective interventions for peritoneal fibrosis. In the present study, we explored whether adding caffeic acid phenethyl ester (CAPE) to peritoneal dialysis fluid (PDF) improved peritoneal fibrosis caused by PD and explored the molecular mechanism. We established a peritoneal fibrosis model in Sprague-Dawley rats through intraperitoneal injection of PDF and lipopolysaccharide (LPS). Rats in the PD group showed increased peritoneal thickness, submesothelial collagen deposition, and the expression of TGFß1 and α-SMA. Adding CAPE to PDF significantly inhibited PD-induced submesothelial thickening, reduced TGFß1 and α-SMA expression, alleviated peritoneal fibrosis, and improved the peritoneal ultrafiltration function. In vitro, peritoneal mesothelial cells (PMCs) treated with PDF showed inhibition of the AMPK/SIRT1 pathway, mitochondrial membrane potential depolarization, overproduction of mitochondrial reactive oxygen species (ROS), decreased ATP synthesis, and induction of mesothelial-mesenchymal transition (MMT). CAPE activated the AMPK/SIRT1 pathway, thereby inhibiting mitochondrial membrane potential depolarization, reducing mitochondrial ROS generation, and maintaining ATP synthesis. However, the beneficial effects of CAPE were counteracted by an AMPK inhibitor and siSIRT1. Our results suggest that CAPE maintains mitochondrial homeostasis by upregulating the AMPK/SIRT1 pathway, which alleviates oxidative stress and MMT, thereby mitigating the damage to the peritoneal structure and function caused by PD. These findings suggest that adding CAPE to PDF may prevent and treat peritoneal fibrosis.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Ácidos Cafeicos , Diálisis Peritoneal , Fibrosis Peritoneal , Alcohol Feniletílico , Sirtuina 1 , Animales , Ratas , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Ácidos Cafeicos/farmacología , Ácidos Cafeicos/uso terapéutico , Soluciones para Diálisis , Modelos Animales de Enfermedad , Homeostasis/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Diálisis Peritoneal/efectos adversos , Fibrosis Peritoneal/etiología , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/prevención & control , Peritoneo/patología , Peritoneo/efectos de los fármacos , Peritoneo/metabolismo , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/farmacología , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Sirtuina 1/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
19.
J Affect Disord ; 359: 333-341, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38801920

RESUMEN

BACKGROUND: Neuroimmune plays an important role in major depressive disorders (MDD). N-linked protein glycosylation (NLG) might contribute to depression by regulating the neuroinflammatory response. As microglia is the main executor of neuroimmune function in the central neural system (CNS), targeting the process of N-linked protein glycosylation of microglia in the mice used for studying depression might potentially offer new avenues for the strategy for MDD. METHODS: The chronic unpredictable mild stress (CUMS) mouse model was established for the whole brain microglia isolating. Then, RNA samples of microglia were extracted for transcriptome sequencing and mRNA analysis. Immunofluorescence (IF) was used to identify the expression level of NLG-related enzyme, B4galt1, in microglia. RESULTS: The data showed that NLG was positively related to depression. Moreover, the NLG-related gene, B4galt1 increased expression in the microglia of CUMS mice. Then, the inhibition of NLG reversed the depressive behavior in CUMS mice. The expression level of B4galt1 in CUMS mice was upregulating following the NLG-inhibitor treatment. Similar results haven't been observed in neurons. Information obtained from these experiments showed increasing expression of B4galt1 in microglia following depressive-like behaviors. CONCLUSIONS: These findings indicate that NLG in microglia is associated with MDD, and suggest that therapeutically targeting NLG might be an effective strategy for depression. LIMITATIONS: How to modulate the B4galt1 or NLG pathways in microglia efficiently and economically request new technologies.


Asunto(s)
Trastorno Depresivo Mayor , Modelos Animales de Enfermedad , Microglía , Animales , Ratones , Microglía/metabolismo , Glicosilación , Trastorno Depresivo Mayor/metabolismo , Masculino , Estrés Psicológico/metabolismo , Estrés Psicológico/inmunología , Depresión/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Ratones Endogámicos C57BL , Encéfalo/metabolismo
20.
World J Gastrointest Oncol ; 16(5): 2038-2059, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38764836

RESUMEN

BACKGROUND: Heterogeneous ribonucleoprotein A1 (hnRNPA1) has been reported to enhance the Warburg effect and promote colon cancer (CC) cell proliferation, but the role and mechanism of the miR-490-3p/hnRNPA1-b/PKM2 axis in CC have not yet been elucidated. AIM: To investigate the role and mechanism of a novel miR-490-3p/hnRNPA1-b/PKM2 axis in enhancing the Warburg effect and promoting CC cell proliferation through the PI3K/AKT pathway. METHODS: Paraffin-embedded pathological sections from 220 CC patients were collected and subjected to immunohistochemical analysis to determine the expression of hnRNPA1-b. The relationship between the expression values and the clinicopathological features of the patients was investigated. Differences in mRNA expression were analyzed using quantitative real-time polymerase chain reaction, while differences in protein expression were analyzed using western blot. Cell proliferation was evaluated using the cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, and cell cycle and apoptosis were detected using flow cytometric assays. The targeted binding of miR-490-3p to hnRNPA1-b was validated using a dual luciferase reporter assay. The Warburg effect was evaluated by glucose uptake and lactic acid production assays. RESULTS: The expression of hnRNPA1-b was significantly increased in CC tissues and cells compared to normal controls (P < 0.05). Immunohistochemical results demonstrated significant variations in the expression of the hnRNPA1-b antigen in different stages of CC, including stage I, II-III, and IV. Furthermore, the clinicopathologic characterization revealed a significant correlation between hnRNPA1-b expression and clinical stage as well as T classification. HnRNPA1-b was found to enhance the Warburg effect through the PI3K/AKT pathway, thereby promoting proliferation of HCT116 and SW620 cells. However, the proliferation of HCT116 and SW620 cells was inhibited when miR-490-3p targeted and bound to hnRNPA1-b, effectively blocking the Warburg effect. CONCLUSION: These findings suggest that the novel miR-490-3p/hnRNPA1-b/PKM2 axis could provide a new strategy for the diagnosis and treatment of CC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA