Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Environ Sci Process Impacts ; 26(8): 1380-1390, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38973384

RESUMEN

Microplastics have become an increasingly concerning pollutant in aquatic environments, and photodegradation is their main degradation pathway in water. Gaining insight into the transformation process of microplastics will enhance our understanding of their behavior and destiny in natural environments. This paper studied the aging process of BER microplastics in aquatic environments under simulated sunlight and investigated the changes in the physical and chemical properties of microplastics and the changes in the leachate. During the photodegradation process, BER-MPs underwent extensive oxidation and reduction in particle size, and the originally smooth surface developed numerous voids, accompanied by yellowing. Introduction of O atoms in the molecular chains increased their hydrophilicity, resulting in the polymer chains breaking away from the plastic particles and dissolving in water. Also, once BER was excited by light, environmentally persistent free radicals are produced on its surface. Moreover, the breaking of C-Br bonds occurred during the photodegradation process of BER-MPs, which suggested that tetrabromobisphenol A would be transformed during the photoaging process of BER even if it was covalently bound to BER.


Asunto(s)
Microplásticos , Fotólisis , Luz Solar , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Microplásticos/química , Modelos Químicos
2.
Insects ; 15(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921171

RESUMEN

Grapholita molesta (Busck) is a pest of rosaceous fruit plants worldwide. Due to a combination of monandry and promiscuity in G. molesta, the age and mating history of both sexes significantly affected the mating and reproductive success. In this study, the interactions of different ages (3, 5, or 7 days) and mating history (unmated or mated) in each sex on the mating selection, reproductive system, and offspring production were investigated in the laboratory. The results showed that these differences mainly occurred in young females or males, associated with unmated or mated state. Especially, the 3-day-old unmated females were preferred by the 7-day-old males but discriminated against by the 3- or 5-day-old unmated males, whereas the 3-day-old mated males were preferred by the 3-day-old mated or 7-day-old females but discriminated against by the 3- or 5-day-old unmated females. The lengths of the ovarian ducts were affected by age in the unmated females, with the greatest length being found at 7 days old. The size of testes varied with age in the unmated males, being the largest at 3 days old. At 3 days old, the testes size of the unmated males was larger than that of the mated males. The pairing of 5-day-old unmated females × 3-day-old mated males maximized the successful matings. The least productive pairing was 7-day-old unmated females × 5-day-old mated males. The pairing of 5-day-old mated males × 3-day-old mated females had the lowest number of matings and the highest number of offspring. The pairing of 3-day-old mated females × 3-day-old mated males had a high rate of mating success and the most offspring. These results revealed the different roles between females and males because of physiological states in terms of the reproductive biology in G. molesta.

3.
J Mater Chem B ; 12(25): 6242-6256, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38842217

RESUMEN

Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.


Asunto(s)
Condrocitos , Hidrogeles , Especies Reactivas de Oxígeno , Hidrogeles/química , Hidrogeles/farmacología , Animales , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/citología , Especies Reactivas de Oxígeno/metabolismo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Osteoartritis/tratamiento farmacológico , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Tamaño de la Partícula , Humanos , Zeolitas/química
4.
ACS Sens ; 9(6): 2925-2934, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38836922

RESUMEN

The biomimetic electronic nose (e-nose) technology is a novel technology used for the identification and monitoring of complex gas molecules, and it is gaining significance in this field. However, due to the complexity and multiplicity of gas mixtures, the accuracy of electronic noses in predicting gas concentrations using traditional regression algorithms is not ideal. This paper presents a solution to the difficulty by introducing a fusion network model that utilizes a transformer-based multikernel feature fusion (TMKFF) module combined with a 1DCNN_LSTM network to enhance the accuracy of regression prediction for gas mixture concentrations using a portable electronic nose. The experimental findings demonstrate that the regression prediction performance of the fusion network is significantly superior to that of single models such as convolutional neural network (CNN) and long short-term memory (LSTM). The present study demonstrates the efficacy of our fusion network model in accurately predicting the concentrations of multiple target gases, such as SO2, NO2, and CO, in a gas mixture. Specifically, our algorithm exhibits substantial benefits in enhancing the prediction performance of low-concentration SO2 gas, which is a noteworthy achievement. The determination coefficient (R2) values of 93, 98, and 99% correspondingly demonstrate that the model is very capable of explaining the variation in the concentration of the target gases. The root-mean-square errors (RMSE) are 0.0760, 0.0711, and 3.3825, respectively, while the mean absolute errors (MAE) are 0.0507, 0.0549, and 2.5874, respectively. These results indicate that the model has relatively small prediction errors. The method we have developed holds significant potential for practical applications in detecting atmospheric pollution detection and other molecular detection areas in complex environments.


Asunto(s)
Nariz Electrónica , Gases , Gases/química , Gases/análisis , Redes Neurales de la Computación , Algoritmos , Dióxido de Azufre/análisis , Inteligencia Artificial
5.
Theranostics ; 14(8): 3385-3403, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855175

RESUMEN

Rationale: It has been emergingly recognized that apoptosis generates plenty of heterogeneous apoptotic vesicles (apoVs), which play a pivotal role in the maintenance of organ and tissue homeostasis. However, it is unknown whether apoVs influence postnatal ovarian folliculogenesis. Methods: Apoptotic pathway deficient mice including Fas mutant (Fasmut ) and Fas ligand mutant (FasLmut ) mice were used with apoV replenishment to evaluate the biological function of apoVs during ovarian folliculogenesis. Ovarian function was characterized by morphological analysis, biochemical examination and cellular assays. Mechanistical studies were assessed by combinations of transcriptomic and proteomic analysis as well as molecular assays. CYP17A1-Cre; Axin1fl /fl mice was established to verify the role of WNT signaling during ovarian folliculogenesis. Polycystic ovarian syndrome (PCOS) mice and 15-month-old mice were used with apoV replenishment to further validate the therapeutic effects of apoVs based on WNT signaling regulation. Results: We show that systemic administration of mesenchymal stem cell (MSC)-derived apoptotic vesicles (MSC-apoVs) can ameliorate impaired ovarian folliculogenesis, PCOS phenotype, and reduced birth rate in Fasmut and FasLmut mice. Mechanistically, transcriptome analysis results revealed that MSC-apoVs downregulated a number of aberrant gene expression in Fasmut mice, which were enriched by kyoto encyclopedia of genes and genomes (KEGG) pathway analysis in WNT signaling and sex hormone biosynthesis. Furthermore, we found that apoptotic deficiency resulted in aberrant WNT/ß-catenin activation in theca and mural granulosa cells, leading to responsive action of dickkopf1 (DKK1) in the cumulus cell and oocyte zone, which downregulated WNT/ß-catenin expression in oocytes and, therefore, impaired ovarian folliculogenesis via NPPC/cGMP/PDE3A/cAMP cascade. When WNT/ß-catenin was specially activated in theca cells of CYP17A1-Cre; Axin1fl /fl mice, the same ovarian impairment phenotypes observed in apoptosis-deficient mice were established, confirming that aberrant activation of WNT/ß-catenin in theca cells caused the impairment of ovarian folliculogenesis. We firstly revealed that apoVs delivered WNT membrane receptor inhibitor protein RNF43 to ovarian theca cells to balance follicle homeostasis through vesicle-cell membrane integration. Systemically infused RNF43-apoVs down-regulated aberrantly activated WNT/ß-catenin signaling in theca cells, contributing to ovarian functional maintenance. Since aging mice have down-regulated expression of WNT/ß-catenin in oocytes, we used MSC-apoVs to treat 15-month-old mice and found that MSC-apoVs effectively ameliorated the ovarian function and fertility capacity of these aging mice through rescuing WNT/ß-catenin expression in oocytes. Conclusion: Our studies reveal a previously unknown association between apoVs and ovarian folliculogenesis and suggest an apoV-based therapeutic approach to improve oocyte function and birth rates in PCOS and aging.


Asunto(s)
Apoptosis , Células Madre Mesenquimatosas , Folículo Ovárico , Ovario , Síndrome del Ovario Poliquístico , Vía de Señalización Wnt , Animales , Femenino , Síndrome del Ovario Poliquístico/metabolismo , Ratones , Células Madre Mesenquimatosas/metabolismo , Folículo Ovárico/metabolismo , Ovario/metabolismo , Modelos Animales de Enfermedad , Envejecimiento/fisiología , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/genética
6.
Talanta ; 277: 126325, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38833906

RESUMEN

Infections caused by viruses and bacteria pose a significant threat to global public health, emphasizing the critical importance of timely and precise detection methods. Inductively coupled plasma mass spectrometry (ICP-MS), a contemporary approach for pathogen detection, offers distinct advantages such as high sensitivity, a wide linear range, and multi-index capabilities. This review elucidates the underexplored application of ICP-MS in conjunction with functional nanoparticles (NPs) for the identification of viruses and bacteria. The review commences with an elucidation of the underlying principles, procedures, target pathogens, and NP requirements for this innovative approach. Subsequently, a thorough analysis of the advantages and limitations associated with these techniques is provided. Furthermore, the review delves into a comprehensive examination of the challenges encountered when utilizing NPs and ICP-MS for pathogen detection, culminating in a forward-looking assessment of the potential pathways for advancement in this domain. Thus, this review contributes novel perspectives to the field of pathogen detection in biomedicine by showcasing the promising synergy of ICP-MS and NPs.


Asunto(s)
Bacterias , Espectrometría de Masas , Nanopartículas , Virus , Espectrometría de Masas/métodos , Virus/aislamiento & purificación , Bacterias/aislamiento & purificación , Nanopartículas/química , Humanos
7.
J Mater Chem B ; 12(28): 6774-6804, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38920094

RESUMEN

In the last few decades, tear-based biosensors for continuous glucose monitoring (CGM) have provided new avenues for the diagnosis of diabetes. The tear CGMs constructed from nanomaterials have been extensively demonstrated by various research activities in this field and are gradually witnessing their most prosperous period. A timely and comprehensive review of the development of tear CGMs in a compartmentalized manner from a nanomaterials perspective would greatly broaden this area of research. However, to our knowledge, there is a lack of specialized reviews and comprehensive cohesive reports in this area. First, this paper describes the principles and development of electrochemical glucose sensors. Then, a comprehensive summary of various advanced nanomaterials recently reported for potential applications and construction strategies in tear CGMs is presented in a compartmentalized manner, focusing on sensing properties. Finally, the challenges, strategies, and perspectives used to design tear CGM materials are emphasized, providing valuable insights and guidance for the construction of tear CGMs from nanomaterials in the future.


Asunto(s)
Técnicas Biosensibles , Técnicas Electroquímicas , Nanoestructuras , Lágrimas , Dispositivos Electrónicos Vestibles , Nanoestructuras/química , Humanos , Lágrimas/química , Glucosa/análisis
8.
Biomed Pharmacother ; 177: 116965, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925019

RESUMEN

BACKGROUND AND PURPOSE: GLP-1 receptor agonists are clinically utilized for type 2 diabetes and obesity. In vitro and in vivo preclinical studies were performed to assess the druggability of a novel small molecule GLP-1 receptor biased agonist SAL0112. EXPERIMENTAL APPROACH: The HTRF assay, FLIPR assay, TR-FRET assay, and PathHunter assay were utilized for in vitro studies. Liver transporter tests were conducted using the HEK293-OATP1B1 and HEK293-OATP1B3 cell lines. In vitro stability assessments of various species and in vivo PK studies in rodents were performed. A model of type 2 diabetes and obesity induced by a high-energy diet in transgenic C57BL/6 mice expressing the human GLP-1 receptor gene was conducted. PRINCIPAL RESULTS: SAL0112 demonstrated high potency and selectivity in activating the Gαs pathway of the GLP-1 receptor, with no observed desensitization. SAL0112 demonstrated greater stability in human and rat liver microsomes compared to Danuglipron. In vivo PK studies revealed higher absorption of SAL0112 in rats. SAL0112 displayed a significantly lower potential for DDI on liver transporters compared to Danuglipron. SAL0112 led to significant reductions in body weight (P<0.001), blood glucose levels in OGTT (P<0.001), HbA1c (P<0.05) and improved insulin resistance (P<0.01). Notably, it increased peripheral adipocyte density and resolved hepatic steatosis. The efficacy of SAL0112 was found to be comparable to that of Danuglipron and Liraglutide. CONCLUSION: SAL0112 demonstrated potent and selective GLP-1 receptor biased agonism, effectively alleviating signs of type 2 diabetes in a mouse model. These promising findings pave the way for the advancement of SAL0112 into clinical trials.


Asunto(s)
Diabetes Mellitus Tipo 2 , Receptor del Péptido 1 Similar al Glucagón , Ratones Endogámicos C57BL , Animales , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Humanos , Masculino , Ratas , Células HEK293 , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangre , Ratones , Hipoglucemiantes/farmacología , Hipoglucemiantes/farmacocinética , Ratones Transgénicos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Microsomas Hepáticos/metabolismo , Ratas Sprague-Dawley , Glucemia/efectos de los fármacos , Glucemia/metabolismo
9.
Biomed Mater ; 19(4)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38740038

RESUMEN

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.


Asunto(s)
Antibacterianos , Biopelículas , Iones , Metales de Tierras Raras , Pruebas de Sensibilidad Microbiana , Plancton , Pseudomonas aeruginosa , Metales de Tierras Raras/química , Metales de Tierras Raras/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Plancton/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Humanos , Staphylococcus aureus/efectos de los fármacos , Animales , Norfloxacino/farmacología , Norfloxacino/química
10.
Front Cell Dev Biol ; 12: 1376814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694818

RESUMEN

The pivotal role of FGF18 in the regulation of craniofacial and skeletal development has been well established. Previous studies have demonstrated that mice with deficiency in Fgf18 exhibit severe craniofacial dysplasia. Recent clinical reports have revealed that the duplication of chromosome 5q32-35.3, which encompasses the Fgf18 gene, can lead to cranial bone dysplasia and congenital craniosynostosis, implicating the consequence of possible overdosed FGF18 signaling. This study aimed to test the effects of augmented FGF18 signaling by specifically overexpressing the Fgf18 gene in cranial neural crest cells using the Wnt1-Cre;pMes-Fgf18 mouse model. The results showed that overexpression of Fgf18 leads to craniofacial abnormalities in mice similar to the Pierre Robin sequence in humans, including abnormal tongue morphology, micrognathia, and cleft palate. Further examination revealed that elevated levels of Fgf18 activated the Akt and Erk signaling pathways, leading to an increase in the proliferation level of tongue tendon cells and alterations in the contraction pattern of the genioglossus muscle. Additionally, we observed that excessive FGF18 signaling contributed to the reduction in the length of Meckel's cartilage and disrupted the development of condylar cartilage, ultimately resulting in mandibular defects. These anomalies involve changes in several downstream signals, including Runx2, p21, Akt, Erk, p38, Wnt, and Ihh. This study highlights the crucial role of maintaining the balance of endogenous FGF18 signaling for proper craniofacial development and offers insights into potential formation mechanisms of the Pierre Robin sequence.

11.
Microsyst Nanoeng ; 10: 57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725435

RESUMEN

An electronic tongue (E-tongue) comprises a series of sensors that simulate human perception of taste and embedded artificial intelligence (AI) for data analysis and recognition. Traditional E-tongues based on electrochemical methods suffer from a bulky size and require larger sample volumes and extra power sources, limiting their applications in in vivo medical diagnosis and analytical chemistry. Inspired by the mechanics of the human tongue, triboelectric components have been incorporated into E-tongue platforms to overcome these limitations. In this study, an integrated multichannel triboelectric bioinspired E-tongue (TBIET) device was developed on a single glass slide chip to improve the device's taste classification accuracy by utilizing numerous sensory signals. The detection capability of the TBIET was further validated using various test samples, including representative human body, environmental, and beverage samples. The TBIET achieved a remarkably high classification accuracy. For instance, chemical solutions showed 100% identification accuracy, environmental samples reached 98.3% accuracy, and four typical teas demonstrated 97.0% accuracy. Additionally, the classification accuracy of NaCl solutions with five different concentrations reached 96.9%. The innovative TBIET exhibits a remarkable capacity to detect and analyze droplets with ultrahigh sensitivity to their electrical properties. Moreover, it offers a high degree of reliability in accurately detecting and analyzing various liquid samples within a short timeframe. The development of a self-powered portable triboelectric E-tongue prototype is a notable advancement in the field and is one that can greatly enhance the feasibility of rapid on-site detection of liquid samples in various settings.

12.
Environ Sci Pollut Res Int ; 31(19): 27609-27633, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38589591

RESUMEN

In recent years, as global industrialization has intensified, environmental pollution has become an increasingly serious problem. Improving water quality and achieving wastewater purification remain top priorities for environmental health initiatives. The Fenton process is favored by researchers due to its high efficiency and ease of operation. Central to the Fenton process is a catalyst used to activate hydrogen peroxide, rapidly degrading pollutants, improving water quality. Among various catalysts developed, copper-based catalysts have attracted considerable attention due to their affordability, high activity, and stable performance. Based on this, this paper reviews the development of copper-based Fenton systems over the past decade. It mainly involves the research and application of copper-based catalysts in different Fenton systems, including photo-Fenton, electro-Fenton, microwave-Fenton, and ultrasonic-Fenton. This review provides a fundamental reference for the subsequent studies of copper-based Fenton systems, contributing to the goal of transitioning these systems from laboratory research into practical environmental applications.


Asunto(s)
Cobre , Peróxido de Hidrógeno , Hierro , Aguas Residuales , Contaminantes Químicos del Agua , Cobre/química , Peróxido de Hidrógeno/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Hierro/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Catálisis
13.
Health Rep ; 35(4): 3-14, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630919

RESUMEN

Background: This study examines the association of dental insurance with oral health care access and utilization in Canada while accounting for income and sociodemographic factors. It contributes to a baseline of oral health care disparities before the implementation of the Canadian Dental Care Plan (CDCP). Data and methods: This retrospective study of Canadians aged 18 to 64 years is based on data from the 2022 Canadian Community Health Survey. Multivariable logistic regression was employed to evaluate the association of dental insurance with the recency and frequency of dental visits, as well as avoidance of dental care because of cost. Results: Overall, 65.7% of Canadians reported visiting a dental professional in the previous year: 74.6% of those with private insurance, 62.8% with public insurance, and 49.8% uninsured. Cost-related avoidance of dental care was 16.0%, 20.9%, and 47.4% for the privately insured, publicly insured, and uninsured, respectively. After adjustment, adults with private (odds ratio [OR]=2.54; 95% confidence interval [CI]: 2.32 to 2.78) and public (OR=2.17; 95% CI: 1.75 to 2.68) insurance were more likely to have visited a dental professional in the last year compared with those without insurance. Similarly, both private (OR=0.22; 95% CI: 0.20 to 0.25) and public (OR=0.22; 95% CI: 0.17 to 0.29) insurance holders showed a significantly lower likelihood of avoiding dental visits because of cost when compared with uninsured individuals. Interpretation: This study showed the significant association of dental insurance with access to oral health care in Canada, contributing to setting a critical benchmark for assessments of the CDCP's effectiveness in addressing oral health disparities.


Asunto(s)
Disparidades en Atención de Salud , Seguro Odontológico , Pueblos de América del Norte , Adulto , Humanos , Canadá , Atención Odontológica , Accesibilidad a los Servicios de Salud , Estudios Retrospectivos , Adolescente , Adulto Joven , Persona de Mediana Edad
14.
Adv Healthc Mater ; 13(17): e2304189, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38539056

RESUMEN

The systemic use of tranexamic acid (TA) as an oral drug can bring adverse reactions, while intradermal injection leads to pain and a risk of infection. Moreover, it is difficult for highly hydrophilic TA to penetrate the skin barrier that contains lots of hydrophobic lipid compounds, which poses enormous restrictions on its topical application. Current transdermal TA delivery strategies are suffering from low drug load rates, plus their synthesis complexity, time-consumption, etc. adding to the difficulty of TA topical application in clinical therapeutics. To increase the penetration of TA, a novel approach using TA-loaded ZIF-8 (TA@ZIF-8) is developed. The encapsulation efficiency of TA@ZIF-8 reaches ≈25% through physical adsorption and chemical bonding of TA indicates by theoretical simulation and the improved TA penetration is elevated through activating the aquaporin-3 (AQP-3) protein. Additionally, in vivo and in vitro experiments demonstrate the preponderance of TA@ZIF-8 for penetration ability and the advantages in intracellular uptake, minor cytotoxicity, and inhibition of melanogenesis and inflammatory factors. Moreover, clinical trials demonstrate the safety and efficacy of TA@ZIF-8 in the treatment of melasma and rosacea. This work presents a potential topical application of TA, free from the safety concerns associated with systemic drug administration.


Asunto(s)
Acuaporina 3 , Melanosis , Rosácea , Ácido Tranexámico , Ácido Tranexámico/química , Ácido Tranexámico/farmacocinética , Ácido Tranexámico/farmacología , Ácido Tranexámico/administración & dosificación , Humanos , Animales , Rosácea/tratamiento farmacológico , Acuaporina 3/metabolismo , Melanosis/tratamiento farmacológico , Ratones , Administración Cutánea , Femenino , Estructuras Metalorgánicas/química , Piel/metabolismo , Piel/efectos de los fármacos , Masculino
15.
Crit Rev Toxicol ; 54(1): 2-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38318766

RESUMEN

INTRODUCTION: Fluoride is a naturally occurring substance that is also added to drinking water, dental hygiene products, and food supplements for preventing dental caries. Concerns have been raised about several other potential health risks of fluoride. OBJECTIVE: To conduct a robust synthesis of evidence regarding human health risks due to exposure to fluoride in drinking water, and to develop a point of departure (POD) for setting a health-based value (HBV) for fluoride in drinking water. METHODS: A systematic review of evidence published since recent reviews of human, animal, and in vitro data was carried out. Bradford Hill considerations were used to weigh the evidence for causality. Several key studies were considered for deriving PODs. RESULTS: The current review identified 89 human studies, 199 animal studies, and 10 major in vitro reviews. The weight of evidence on 39 health endpoints was presented. In addition to dental fluorosis, evidence was considered strong for reduction in IQ scores in children, moderate for thyroid dysfunction, weak for kidney dysfunction, and limited for sex hormone disruptions. CONCLUSION: The current review identified moderate dental fluorosis and reduction in IQ scores in children as the most relevant endpoints for establishing an HBV for fluoride in drinking water. PODs were derived for these two endpoints, although there is still some uncertainty in the causal weight of evidence for causality for reducing IQ scores in children and considerable uncertainty in the derivation of its POD. Given our evaluation of the overall weight of evidence, moderate dental fluorosis is suggested as the key endpoint until more evidence is accumulated on possible reduction of IQ scores effects. A POD of 1.56 mg fluoride/L for moderate dental fluorosis may be preferred as a starting point for setting an HBV for fluoride in drinking water to protect against moderate and severe dental fluorosis. Although outside the scope of the current review, precautionary concerns for potential neurodevelopmental cognitive effects may warrant special consideration in the derivation of the HBV for fluoride in drinking water.


Asunto(s)
Agua Potable , Fluoruros , Fluorosis Dental , Humanos , Fluoruros/toxicidad , Agua Potable/química , Animales , Fluorosis Dental/epidemiología , Medición de Riesgo
16.
BMC Pediatr ; 24(1): 61, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38243173

RESUMEN

BACKGROUND: Human milk fortifier (HMF) composition has been optimized recently. But clinical evidence of its safety and efficacy is limited in Chinese population. The aim of this study was to evaluate effects of a new HMF in growth, nutritional status, feeding intolerance, and major morbidities among very preterm (VPT) or very low birth weight (VLBW) infants in China. METHODS: VPT/VLBW infants admitted from March 2020 to April 2021 were prospectively included in the experimental (new HMF, nHMF) group, who received a new powdered HMF as a breast milk feeding supplement during hospitalization. Infants in the control group (cHMF) admitted from January 2018 to December 2019, were retrospective included, and matched with nHMF group infants for gestational age and birth weight. They received other kinds of commercially available HMFs. Weight gain velocity, concentrations of nutritional biomarkers, incidence of major morbidities, and measures of feeding intolerance were compared between the two groups. RESULTS: Demographic and clinical characteristics of infants in nHMF and cHMF groups were comparable. Weight gain velocity had no significant difference between the nHMF (14.0 ± 3.5 g/kg/d) and the cHMF group (14.2 ± 3.8 g/kg/d; P = 0.46). Incidence of morbidities, including necrotizing enterocolitis, bronchopulmonary dysplasia, retinopathy of prematurity, culture-confirmed sepsis, and feeding intolerance during hospitalization between nHMF and cHMF, were similar (all P-values > 0.05). The time to achieve full enteral feeding [13.5 (10, 21) days] in the nHMF group was significantly shorter than that in the cHMF group [17 (12, 23) days, HR = 0.67, 95%CI: 0.49, 0.92; P = 0.01]. Compared with cHMF group, the decrease of blood urea nitrogen level over time in nHMF group was smaller (ß = 0.6, 95%CI:0.1, 1.0; P = 0.01). CONCLUSIONS: The new HMF can promote growth of preterm infants effectively without increasing the incidence of major morbidity and feeding intolerance. It can be used feasible in Chinese VPT/VLBW infants. TRIAL REGISTRATION: This study was registered on ClinicalTrials.gov (NCT04283799).


Asunto(s)
Enterocolitis Necrotizante , Leche Humana , Lactante , Femenino , Recién Nacido , Humanos , Estudios Retrospectivos , Recien Nacido Extremadamente Prematuro , Alimentos Fortificados , Recién Nacido de muy Bajo Peso , Aumento de Peso , Enterocolitis Necrotizante/epidemiología , Fórmulas Infantiles
17.
J Mater Chem B ; 12(5): 1168-1193, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38193143

RESUMEN

A biosensor is a device that reacts with the analyte to be analyzed, detects its concentration, and generates readable information, which plays an important role in medical diagnosis, detection of physiological indicators, and disease prevention. Nanomaterials have received increasing attention in the fabrication and improvement of biosensors due to their unique physicochemical and optical properties. In this paper, the properties of nanomaterials such as the size effect, optical and electrical properties, and their advantages in the field of biosensing are briefly summarized, and the application of nanomaterials can effectively improve the sensitivity and reduce the detection limit of biosensors. The advantages of commonly used nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), quantum dots (QDs), graphene, and magnetic nanobeads for biosensor applications are also reviewed. Besides, the two main types of biosensors using nanomaterials involved in their construction and their working principles are described, and the toxicity and biocompatibility of nanomaterials and the future direction of nanomaterial biosensors are discussed.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanoestructuras , Nanotubos de Carbono , Nanotubos de Carbono/química , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química
18.
J Pathol ; 262(3): 320-333, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38108121

RESUMEN

Bone morphogenetic protein (BMP)-Smad1/5/8 signaling plays a crucial regulatory role in lung development and adult lung homeostasis. However, it remains elusive whether BMP-Smad1/5/8 signaling is involved in the pathogenesis of emphysema. In this study, we downregulated BMP-Smad1/5/8 signaling by overexpressing its antagonist Noggin in adult mouse alveolar type II epithelial cells (AT2s), resulting in an emphysematous phenotype mimicking the typical pathological features of human emphysema, including distal airspace enlargement, pulmonary inflammation, extracellular matrix remodeling, and impaired lung function. Dysregulation of BMP-Smad1/5/8 signaling in AT2s leads to inflammatory destruction dominated by macrophage infiltration, associated with reduced secretion of surfactant proteins and inhibition of AT2 proliferation and differentiation. Reactivation of BMP-Smad1/5/8 signaling by genetics or chemotherapy significantly attenuated the morphology and pathophysiology of emphysema and improved the lung function in Noggin-overexpressing lungs. We also found that BMP-Smad1/5/8 signaling was downregulated in cigarette smoke-induced emphysema, and that enhancing its activity in AT2s prevented or even reversed emphysema in the mouse model. Our data suggest that BMP-Smad1/5/8 signaling, located at the top of the signaling cascade that regulates lung homeostasis, represents a key molecular regulator of alveolar stem cell secretory and regenerative function, and could serve as a potential target for future prevention and treatment of pulmonary emphysema. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Enfisema , Enfisema Pulmonar , Transducción de Señal , Animales , Humanos , Ratones , Células Epiteliales Alveolares/metabolismo , Enfisema/metabolismo , Pulmón/metabolismo , Enfisema Pulmonar/genética , Transducción de Señal/fisiología , Proteína Smad1/genética , Proteína Smad1/metabolismo
19.
Acta Biomater ; 175: 199-213, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38160859

RESUMEN

Wearable microneedle sensors for continuous glucose monitoring (CGM) have great potential for clinical impact by allowing access to large data sets to provide individualized treatment plans. To date, their development has been challenged by the accurate wide linear range tracking of interstitial fluid (ISF) glucose (Glu) levels. Here, we present a CGM platform consisting of a three-electrode microneedle electrochemical biosensor and a fully integrated radio-chemical analysis system. The long-term performance of the robust CGM on diabetic rats was achieved by electrodepositing Prussian blue (PB), and crosslinking glucose oxidase (GOx) and chitosan to form a 3D network using glutaraldehyde (GA). After redox by GOx, PB rapidly decomposes hydrogen peroxide and mediates charge transfer, while the 3D network and graphite powder provide enrichment and release sites for Glu and catalytic products, enabling a sensing range of 0.25-35 mM. Microneedle CGM has high sensitivity, good stability, and anti-interference ability. In diabetic rats, CGM can accurately monitor Glu levels in the ISF in real-time, which are highly consistent with levels measured by commercial Glu meters. These results indicate the feasibility and application prospects of the PB-based CGM for the clinical management of diabetes. STATEMENT OF SIGNIFICANCE: This study addresses the challenge of continuous glucose monitoring system design where the narrow linear range of sensing due to the miniaturization of sensors fails to meet the monitoring needs of clinical diabetic patients. This was achieved by utilizing a three-dimensional network of glutaraldehyde cross-linked glucose oxidase and chitosan. The unique topology of the 3D network provides a large number of sites for glucose enrichment and anchors the enzyme to the sensing medium and the conductive substrate through covalent bonding, successfully blocking the escape of the enzyme and the sensing medium and shortening the electron transfer and transmission path.


Asunto(s)
Técnicas Biosensibles , Quitosano , Diabetes Mellitus Experimental , Dispositivos Electrónicos Vestibles , Humanos , Ratas , Animales , Glucemia , Automonitorización de la Glucosa Sanguínea , Glucosa Oxidasa , Monitoreo Continuo de Glucosa , Glutaral , Glucosa
20.
J Mater Chem B ; 11(45): 10793-10821, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37910389

RESUMEN

Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.


Asunto(s)
Carbono , Nanoestructuras , Biomasa , Técnicas Electroquímicas/métodos , Nanoestructuras/química , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA