Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 251, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266510

RESUMEN

Solitons, the distinct balance between nonlinearity and dispersion, provide a route toward ultrafast electromagnetic pulse shaping, high-harmonic generation, real-time image processing, and RF photonic communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs, examining spatial breathers, chaos transitions, and dynamical deterministic switching - in nonlinear measurements and theory. To understand the breather solitons, we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers, with and without chaos initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs, in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion. We present maps of the accessible nonlinear regions, the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths, and the transition between the collective breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and nonlinear modeling. To image these soliton ensembles and their breathers, we further constructed panoramic temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-differential sampling, we present two-dimensional evolution maps of soliton crystal breathers, including with defects, in both stable breathers and breathers with drift. Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes, their spatio-temporal dependences, and their stability-existence zones.

2.
Opt Lett ; 48(6): 1371-1374, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36946930

RESUMEN

Optical bistability opens up a promising avenue toward various optical nonlinear functions analogous to their electrical counterparts, such as switches, logic gates, and memory. Free-space bistable devices have unique advantages in large-scale integration. However, most proposed free-space schemes for optical bistability have limitations in one or more aspects of low contrast ratio, compromised compatibility, slow switching speed, and bulk size. Epsilon-near-zero (ENZ) materials have recently shown an ultrafast and giant optical nonlinearity within a subwavelength scale, potentially overcoming these obstacles. Using large-mobility indium-doped cadmium oxide (CdO) as the ENZ material, we numerically demonstrate two efficient schemes for high-contrast optical bistability within a deep subwavelength size based on the ENZ mode and the Berreman mode. The ENZ wavelength can be optically tuned with a typical time scale of sub-picoseconds, giving rise to a switchable bistability between the near-zero state and the high-reflection state. Our work contributes to the advances on compact and ultrafast all-optical signal processing.

3.
Opt Express ; 29(21): 34302-34313, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34809224

RESUMEN

Energy transfer is an essential light-matter interaction. The transfer efficiency is critical for various applications such as light-emitting, optical modulation, and the photoelectric effect. Two primary forms of light-matter energy transfer, including absorption and emission, can be enhanced in optical cavities. Both forms can reach an extremum inside the cavity according to the coupled-mode theory. Graphene conductivity at the terahertz frequency can be tuned from positive to negative, providing a suitable material to study switchable extremums of these two forms. We integrate graphene with a nested cavity where an infrared cavity is inserted in a terahertz cavity, thereby achieving terahertz perfect absorption at the static state and optimal gain under photoexcitation. Leveraging an inserted infrared cavity, we can elevate the working efficiency by strongly absorbing the infrared pump. We also numerically show the feasibility of electrically tunable extreme energy transfer. Our concept of the nested cavity can be extended to different materials and even to guided modes. A switchable synergy of loss and gain potentially enables high-contrast dynamic modulation and photonic devices with multiplexing functions.

4.
Opt Express ; 29(24): 39406-39418, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809306

RESUMEN

Metasurface has achieved fruitful results in tailoring optical fields in free space. However, a systematic investigation on applying meta-optics to completely control waveguide modes is still elusive. Here we present a comprehensive catalog to selectively and exclusively couple free space light into arbitrary high-order waveguide modes of interest, leveraging silicon metasurface-patterned silicon nitride waveguides. By simultaneously engineering the matched phase gradient of the nanoantennas and the vectorial spatial modal overlap between the antenna near-field and target waveguide mode profile, either single or multiple high-order modes are successfully launched with high purity reaching 98%. Moreover, on-chip twisted light generators are theoretically proposed with configurable OAM topological charge ℓ from -3 to +2. This work may serve as a comprehensive framework for guided mode meta-optics and motivates further applications such as versatile integrated couplers, multiplexers, and mode-division multiplexing-based communication systems.

5.
Light Sci Appl ; 10(1): 11, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33414366

RESUMEN

Broadband light sources emitting in the terahertz spectral range are highly desired for applications such as noninvasive imaging and spectroscopy. Conventionally, THz pulses are generated by optical rectification in bulk nonlinear crystals with millimetre thickness, with the bandwidth limited by the phase-matching condition. Here we demonstrate broadband THz emission via surface optical rectification from a simple, commercially available 19 nm-thick indium tin oxide (ITO) thin film. We show an enhancement of the generated THz signal when the pump laser is tuned around the epsilon-near-zero (ENZ) region of ITO due to the pump laser field enhancement associated with the ENZ effect. The bandwidth of the THz signal generated from the ITO film can be over 3 THz, unrestricted by the phase-matching condition. This work offers a new possibility for broadband THz generation in a subwavelength thin film made of an ENZ material, with emerging physics not found in existing nonlinear crystals.

6.
Opt Express ; 27(19): 26405-26414, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31674523

RESUMEN

Epsilon-near-zero (ENZ) materials have recently been suggested as excellent candidates for constructing all-optical and electro-optical switches in the infrared. The performance of previously reported ENZ material-based optical switches, however, has been greatly hampered by the low quality- (Q-) factor of the ENZ cavity, resulting in a large required optical pump fluence or applied voltage, a large insertion loss, or a small modulation depth. Here, we propose a solution by integrating the ENZ material into a Bragg microcavity, such that the Q-factor of the coupled cavity can be dramatically enhanced. Using high-mobility Dysprosium-doped cadmium oxide (CdO) as the prototype ENZ material, we numerically show an infrared all-optical switch with its reflectance modulated from near-zero to 94% under a pump fluence of only 7 µJ cm-2, about a 59-time-reduction compared with a state-of-the-art Berreman-type cavity. Moreover, the high-Q coupled cavity can also be adopted to realize a reflective electro-optical switch. Its reflectance can be switched from near-zero to 89%, with a bias electric field well below the breakdown field of conventional gate dielectrics. The switching operation can further be extended to the transmission mode with a slightly modified cavity geometry, with its absolute transmittance modulated by 40%.

7.
Opt Express ; 27(12): 16425-16439, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31252868

RESUMEN

While metasurfaces are now widely considered in free-space optics, their potential for coupling and tailoring guided waves is not fully explored. Here we transfer the Jones matrix method to target versatile on-chip coupling using metasurface-patterned photonic waveguides around the telecommunication wavelength of 1.55 µm, which can accommodate both propagation and Pancharatnam-Berry phase metasurfaces for guided waves. One can either encode two arbitrary and independent phase profiles to any pair of orthogonal polarizations or deploy complete control over both the phase and polarization of coupled modes. A set of design scenarios synergizing silicon nanoantennas and low-loss silicon-nitride waveguides are proposed, including directional couplers with mode-selectivity and polarization splitters with directionality ranging from 10 to 20 dB. Furthermore, our optimization method can be further extended to cover multiple working wavelengths. Exemplary on-chip color routers are also numerically demonstrated. This chip-integrated metasurface platform further translates the concept of a metasurface into photonic integrated circuits, serving as a positive paradigm for versatile and complete control over waveguide optical signals and motivating chip-scale applications such as polarization/wavelength demultiplexers, optical switches, and multifunctional mode converters.

8.
Sci Rep ; 8(1): 13362, 2018 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-30190496

RESUMEN

Graphene distinguishes itself as a promising candidate for realizing tunable integrated photonic devices with high flexibility. We propose a set of ultracompact tunable on-chip waveguide couplers with mode-selectivity and polarization sensitivity around the telecom wavelength of 1.55 µm, under the configuration of graphene-laminated silicon waveguides patterned with gold nanoantennas. Versatile couplings can be achieved in a widely tunable fashion within a deep-subwavelength area (210 × 210 nm2), by marrying the advantages of tight field confinement in plasmonic antennas and the largely tunable carrier density of graphene. Incident light signals can be selectively coupled into different fundamental modes with good mode quality and high directionality exceeding 25 dB. Design scenarios for asymmetric couplings are presented, where the operation wavelength can be tuned across a 107-nm range around 1.55 mm by altering the chemical potential of graphene from 0 to 1.8 eV. Furthermore, the proposed schemes can be leveraged as mode-sensitive on-chip directional waveguide signal detectors with an extinction ratio over 10 dB. Our results provide a new paradigm upon graphene-assisted tunable integrated photonic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA