Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5398-5402, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892347

RESUMEN

Purpose of the work is to identify the directional coupling between the structures of the brain and the autonomic control of the heart rate variability, to analyze the changes in these coupling in sleep and in wakefulness. Infra-slow oscillations of the electroencephalograms potential and low-frequency components (0.04-0.15 Hz) of the interbeat intervals signal where analyzed using a sensitive method for identifying the directional coupling. The technique, based on modeling the dynamics of instantaneous phases of oscillations, made it possible to reveal the presence and quantify the directional couplings between the structures of the brain and the autonomic control of the heart rate variability. It was shown that the coupling coefficients in the frequency band of 0.04-0.15 Hz (associated mainly with sympathetic control of blood circulation), on average, decrease with falling asleep. We have also shown the asymmetry of coupling. At the same time, stronger connections were revealed in the direction from the autonomic control of the heart rate variability to the brain structures than in the opposite direction. It has been shown that the strength of such couplings decreases with increasing of sleep depth.


Asunto(s)
Electroencefalografía , Vigilia , Sistema Nervioso Autónomo , Frecuencia Cardíaca , Sueño
2.
Front Physiol ; 11: 612787, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519518

RESUMEN

We propose a mathematical model of the human cardiovascular system. The model allows one to simulate the main heart rate, its variability under the influence of the autonomic nervous system, breathing process, and oscillations of blood pressure. For the first time, the model takes into account the activity of the cerebral cortex structures that modulate the autonomic control loops of blood circulation in the awake state and in various stages of sleep. The adequacy of the model is demonstrated by comparing its time series with experimental records of healthy subjects in the SIESTA database. The proposed model can become a useful tool for studying the characteristics of the cardiovascular system dynamics during sleep.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA