RESUMEN
Background: Q fever is a zoonosis caused by Coxiella burnetii which is among the major agents of community-acquired pneumonia in French Guiana. Despite its relatively high incidence, its epidemiology in French Guiana remains unclear, and all previous studies have considered transmission from livestock unlikely, suggesting that a wild reservoir is responsible for transmission. Methods: A country-wide seroprevalence survey of 2697 participants from French Guiana was conducted. Serum samples were tested for phase II IgG antibodies by ELISA and indirect immunofluorescence assays (IFAs). Factors associated with Q fever were investigated, and a serocatalytic model was used to reconstruct the annual force of infection. Findings: The overall weighted seroprevalence was estimated at 9.6% (95% confidence interval (CI): 8.2%-11.0%). The model revealed constant, low-level circulation across French Guiana, particularly affecting middle-aged males (odds ratio (OR): 3.0, 95% credible interval (CrI): 1.7-5.8) and individuals living close to sheep farms (OR: 4, 95% CrI: 1.5-12). The overall annual number of cases was estimated at 579 (95% CrI: 492-670). In the region around Cayenne, the main urban municipality, the high seroprevalence was explained by an outbreak that may have occurred between 1996 and 2003 and that infected 10% (95% CrI: 6.9%-14%) of the population and males and females alike. Interpretation: This study reveals for the first time Q fever dynamics of transmission and the role of domestic livestock in transmission in French Guiana and highlights the urgent need to reinforce Q fever surveillance in livestocks of the entire Guianese territory. Funding: This study was supported by the "European Regional Development Fund" under EPI-ARBO grant agreement (GY0008695), the "Regional Health Agency of French Guiana" and the "National Center of Spatial Studies". The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
RESUMEN
Serological surveys are essential to quantify immunity in a population but serological cross-reactivity often impairs estimates of the seroprevalence. Here, we show that modeling helps addressing this key challenge by considering the important cross-reactivity between Chikungunya (CHIKV) and O'nyong-nyong virus (ONNV) as a case study. We develop a statistical model to assess the epidemiology of these viruses in Mali. We additionally calibrate the model with paired virus neutralization titers in the French West Indies, a region with known CHIKV circulation but no ONNV. In Mali, the model estimate of ONNV and CHIKV prevalence is 30% and 13%, respectively, versus 27% and 2% in non-adjusted estimates. While a CHIKV infection induces an ONNV response in 80% of cases, an ONNV infection leads to a cross-reactive CHIKV response in only 22% of cases. Our study shows the importance of conducting serological assays on multiple cross-reactive pathogens to estimate levels of virus circulation.
Asunto(s)
Algoritmos , Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Reacciones Cruzadas/inmunología , Modelos Estadísticos , Virus O'nyong-nyong/inmunología , Fiebre Chikungunya/diagnóstico , Fiebre Chikungunya/epidemiología , Virus Chikungunya/fisiología , Humanos , Malí/epidemiología , Martinica/epidemiología , Virus O'nyong-nyong/fisiología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estudios SeroepidemiológicosRESUMEN
Despite the health, social and economic impact of arboviruses in French Guiana, very little is known about the extent to which infection burden is shared between individuals. We conducted a large multiplexed serological survey among 2697 individuals from June to October 2017. All serum samples were tested for IgG antibodies against DENV, CHIKV, ZIKV and MAYV using a recombinant antigen-based microsphere immunoassay with a subset further evaluated through anti-ZIKV microneutralization tests. The overall DENV seroprevalence was estimated at 73.1% (70.6-75.4) in the whole territory with estimations by serotype at 68.9% for DENV-1, 38.8% for DENV-2, 42.3% for DENV-3, and 56.1% for DENV-4. The overall seroprevalence of CHIKV, ZIKV and MAYV antibodies was 20.3% (17.7-23.1), 23.3% (20.9-25.9) and 3.3% (2.7-4.1), respectively. We provide a consistent overview of the burden of emerging arboviruses in French Guiana, with useful findings for risk mapping, future prevention and control programs. The majority of the population remains susceptible to CHIKV and ZIKV, which could potentially facilitate the risk of further re-emergences. Our results underscore the need to strengthen MAYV surveillance in order to rapidly detect any substantial changes in MAYV circulation patterns.
Asunto(s)
Anticuerpos Antivirales/sangre , Infecciones por Arbovirus/epidemiología , Infecciones por Arbovirus/inmunología , Arbovirus/genética , Arbovirus/inmunología , Adolescente , Adulto , Anciano , Infecciones por Arbovirus/clasificación , Arbovirus/clasificación , Arbovirus/patogenicidad , Niño , Preescolar , Costo de Enfermedad , Estudios Transversales , Demografía , Femenino , Guyana Francesa/epidemiología , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Prevalencia , Estudios Seroepidemiológicos , Adulto JovenRESUMEN
Characterizing the circulation of Mayaro virus (MAYV), an emerging arbovirus threat, is essential for risk assessment but challenging due to cross-reactivity with other alphaviruses such as chikungunya virus (CHIKV). Here, we develop an analytical framework to jointly assess MAYV epidemiology and the extent of cross-reactivity with CHIKV from serological data collected throughout French Guiana (N = 2697). We find strong evidence of an important sylvatic cycle for MAYV with most infections occurring near the natural reservoir in rural areas and in individuals more likely to go to the forest (i.e., adult males) and with seroprevalences of up to 18% in some areas. These findings highlight the need to strengthen MAYV surveillance in the region and showcase how modeling can improve interpretation of cross-reacting assays.