Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Proc ; 12(Suppl 9): 19, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275876

RESUMEN

BACKGROUND: Bayesian networks have been proposed as a way to identify possible causal relationships between measured variables based on their conditional dependencies and independencies. We explored the use of Bayesian network analyses applied to the GAW20 data to identify possible causal relationships between differential methylation of cytosine-phosphate-guanine dinucleotides (CpGs), single-nucleotide polymorphisms (SNPs), and blood lipid trait (triglycerides [TGs]). METHODS: After initial exploratory linear regression analyses, 2 Bayesian networks analyses were performed. First, we used the real data and modeled the effects of 4 CpGs previously found to be associated with TGs in the Genetics of Lipid Lowering Drugs and Diet Network Study (GOLDN). Second, we used the simulated data and modeled the effect of a fictional lipid modifying drug with 5 known causal SNPs and 5 corresponding CpGs. RESULTS: In the real data we show that relationships are present between the CpGs, TGs, and other variables-age, sex, and center. In the simulated data, we show, using linear regression, that no CpGs and only 1 SNP were associated with a change in TG levels, and, using Bayesian network analysis, that relationships are present between the change in TG levels and most SNPs, but not with CpGs. CONCLUSIONS: Even when the causal relationships between variables are known, as with the simulated data, if the relationships are not strong then it is challenging to reproduce them in a Bayesian network.

2.
BMC Proc ; 12(Suppl 9): 38, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275888

RESUMEN

BACKGROUND: In a typical genome-enabled prediction problem there are many more predictor variables than response variables. This prohibits the application of multiple linear regression, because the unique ordinary least squares estimators of the regression coefficients are not defined. To overcome this problem, penalized regression methods have been proposed, aiming at shrinking the coefficients toward zero. METHODS: We explore prediction of phenotype from single nucleotide polymorphism (SNP) data in the GAW20 data set using a penalized regression approach (LASSO [least absolute shrinkage and selection operator] regression). We use 10-fold cross-validation to assess predictive performance and 10-fold nested cross-validation to specify a penalty parameter. RESULTS: By analyzing approximately 600,000 SNPs we find that, when the sample size comprises a few hundred individuals, SNP effects are heavily penalized, resulting in a poor predictive performance. Increasing the sample size to a few thousand individuals results in a much smaller penalization of the true effects, thus greatly improving the prediction. CONCLUSIONS: LASSO regression results in a heavy shrinkage of the regression coefficients, and also requires large sample sizes (several thousand individuals) to achieve good prediction.

3.
BMC Proc ; 10(Suppl 7): 97-101, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980618

RESUMEN

We investigate the possible replication of "known" associated single-nucleotide polymorphisms (SNPs) with blood pressure and expression phenotypes. Previous studies have provided a list of 95 SNPs thought to be associated with blood pressure phenotypes, of which 44 were present in the Genetic Analysis Workshop 19 (GAW19) family-imputed genome-wide association studies (GWAS) data and 4 in the GAW19 unrelateds sequence data. Using only the real (not simulated) GAW19 data, we show through the use of statistical tests that account for family relatedness, using FaST-LMM (Factored Spectrally Transformed Linear Mixed Model), that none of our candidate SNPs yields a significant p value. Furthermore, a study of epistasis, aiming to detect statistical interactions between loci with respect to their association with transcription levels has provided a list of 30 associated interacting SNP pairs, of which 13 are present in the GAW19 family GWAS and expression data. We show for this set of results, using the program GEMMA (genome-wide efficient mixed-model analysis) to account for family relatedness, that there is evidence of replication within the real GAW19 data. Two individual SNP pairs reach significance, and the set of remaining results give a combined p value of 0.017 that at least 1 of these remaining SNP pairs interacts to influence an expression phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA