Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3323, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083543

RESUMEN

Donor spins in silicon provide a promising material platform for large scale quantum computing. Excellent electron spin coherence times of [Formula: see text] µs with fidelities of 99.9% have been demonstrated for isolated phosphorus donors in isotopically pure 28Si, where donors are local-area-implanted in a nanoscale MOS device. Despite robust single qubit gates, realising two-qubit exchange gates using this technique is challenging due to the statistical nature of the dopant implant and placement process. In parallel a precision scanning probe lithography route has been developed to place single donors and donor molecules on one atomic plane of silicon with high accuracy aligned to heavily phosphorus doped silicon in-plane gates. Recent results using this technique have demonstrated a fast (0.8 ns) two-qubit gate with two P donor molecules placed 13 nm apart in natSi. In this paper we demonstrate a single qubit gate with coherent oscillations of the electron spin on a P donor molecule in natSi patterned by scanning tunneling microscope (STM) lithography. The electron spin exhibits excellent coherence properties, with a [Formula: see text] decoherence time of 298 ± 30 µs, and [Formula: see text] dephasing time of 295 ± 23 ns.

2.
Nat Mater ; 20(1): 38-42, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32690913

RESUMEN

Electron-spin qubits have long coherence times suitable for quantum technologies. Spin-orbit coupling promises to greatly improve spin qubit scalability and functionality, allowing qubit coupling via photons, phonons or mutual capacitances, and enabling the realization of engineered hybrid and topological quantum systems. However, despite much recent interest, results to date have yielded short coherence times (from 0.1 to 1 µs). Here we demonstrate ultra-long coherence times of 10 ms for holes where spin-orbit coupling yields quantized total angular momentum. We focus on holes bound to boron acceptors in bulk silicon 28, whose wavefunction symmetry can be controlled through crystal strain, allowing direct control over the longitudinal electric dipole that causes decoherence. The results rival the best electron-spin qubits and are 104 to 105 longer than previous spin-orbit qubits. These results open a pathway to develop new artificial quantum systems and to improve the functionality and scalability of spin-based quantum technologies.

3.
Nat Nanotechnol ; 14(2): 137-140, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30617309

RESUMEN

The realization of the surface code for topological error correction is an essential step towards a universal quantum computer1-3. For single-atom qubits in silicon4-7, the need to control and read out qubits synchronously and in parallel requires the formation of a two-dimensional array of qubits with control electrodes patterned above and below this qubit layer. This vertical three-dimensional device architecture8 requires the ability to pattern dopants in multiple, vertically separated planes of the silicon crystal with nanometre precision interlayer alignment. Additionally, the dopants must not diffuse or segregate during the silicon encapsulation. Critical components of this architecture-such as nanowires9, single-atom transistors4 and single-electron transistors10-have been realized on one atomic plane by patterning phosphorus dopants in silicon using scanning tunnelling microscope hydrogen resist lithography11,12. Here, we extend this to three dimensions and demonstrate single-shot spin read-out with 97.9% measurement fidelity of a phosphorus dopant qubit within a vertically gated single-electron transistor with <5 nm interlayer alignment accuracy. Our strategy ensures the formation of a fully crystalline transistor using just two atomic species: phosphorus and silicon.

4.
Sci Adv ; 4(12): eaat9199, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30539142

RESUMEN

Coupling spin qubits to electric fields is attractive to simplify qubit manipulation and couple qubits over long distances. Electron spins in silicon offer long lifetimes, but their weak spin-orbit interaction makes electrical coupling challenging. Hole spins bound to acceptor dopants, spin-orbit-coupled J = 3/2 systems similar to Si vacancies in SiC and single Co dopants, are an electrically active spin system in silicon. However, J = 3/2 systems are much less studied than S = 1/2 electrons, and spin readout has not yet been demonstrated for acceptors in silicon. Here, we study acceptor hole spin dynamics by dispersive readout of single-hole tunneling between two coupled acceptors in a nanowire transistor. We identify m J = ±1/2 and m J = ±3/2 levels, and we use a magnetic field to overcome the initial heavy-light hole splitting and to tune the J = 3/2 energy spectrum. We find regimes of spin-like (+3/2 to -3/2) and charge-like (±1/2 to ±3/2) relaxations, separated by a regime of enhanced relaxation induced by mixing of light and heavy holes. The demonstrated control over the energy level ordering and hybridization are new tools in the J = 3/2 system that are crucial to optimize single-atom spin lifetime and electrical coupling.

5.
Sci Adv ; 4(7): eaaq1459, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30027114

RESUMEN

Phosphorus donor impurities in silicon are a promising candidate for solid-state quantum computing due to their exceptionally long coherence times and high fidelities. However, individual addressability of exchange coupled donors with separations ~15 nm is challenging. We show that by using atomic precision lithography, we can place a single P donor next to a 2P molecule 16 ± 1 nm apart and use their distinctive hyperfine coupling strengths to address qubits at vastly different resonance frequencies. In particular, the single donor yields two hyperfine peaks separated by 97 ± 2.5 MHz, in contrast to the donor molecule that exhibits three peaks separated by 262 ± 10 MHz. Atomistic tight-binding simulations confirm the large hyperfine interaction strength in the 2P molecule with an interdonor separation of ~0.7 nm, consistent with lithographic scanning tunneling microscopy images of the 2P site during device fabrication. We discuss the viability of using donor molecules for built-in addressability of electron spin qubits in silicon.

6.
Nano Lett ; 18(7): 4081-4085, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29792333

RESUMEN

We present a donor-based quadruple-quantum-dot device, designed to host two singlet-triplet qubits fabricated by scanning tunnelling microscope lithography, with just two leads per qubit. The design is geometrically compact, with each pair of dots independently controlled via one gate and one reservoir. The reservoirs both supply electrons for the dots and measure the singlet-triplet state of each qubit via dispersive sensing. We verify the locations of the four phosphorus donor dots via an electrostatic model of the device. We study one of the observed singlet-triplet states with a tunnel coupling of 39 GHz and a S0-to- T- decay of 2 ms at zero detuning. We measure a 5 GHz electrostatic interaction between two pairs of dots separated by 65 nm. The results outline a low-gate-density pathway to a scalable 1D building block of atomic-precision singlet-triplet qubits using donors with dispersive readout.

7.
Sci Adv ; 1(9): e1500707, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26601310

RESUMEN

The exceptionally long quantum coherence times of phosphorus donor nuclear spin qubits in silicon, coupled with the proven scalability of silicon-based nano-electronics, make them attractive candidates for large-scale quantum computing. However, the high threshold of topological quantum error correction can only be captured in a two-dimensional array of qubits operating synchronously and in parallel-posing formidable fabrication and control challenges. We present an architecture that addresses these problems through a novel shared-control paradigm that is particularly suited to the natural uniformity of the phosphorus donor nuclear spin qubit states and electronic confinement. The architecture comprises a two-dimensional lattice of donor qubits sandwiched between two vertically separated control layers forming a mutually perpendicular crisscross gate array. Shared-control lines facilitate loading/unloading of single electrons to specific donors, thereby activating multiple qubits in parallel across the array on which the required operations for surface code quantum error correction are carried out by global spin control. The complexities of independent qubit control, wave function engineering, and ad hoc quantum interconnects are explicitly avoided. With many of the basic elements of fabrication and control based on demonstrated techniques and with simulated quantum operation below the surface code error threshold, the architecture represents a new pathway for large-scale quantum information processing in silicon and potentially in other qubit systems where uniformity can be exploited.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA