Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 149(5): 2950, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34241117

RESUMEN

Mitigation of threats posed to marine mammals by human activities can be greatly improved with a better understanding of animal occurrence in real time. Recent advancements have enabled low-power passive acoustic systems to be integrated into long-endurance autonomous platforms for persistent near real-time monitoring of marine mammals via the sounds they produce. Here, the integration of a passive acoustic instrument capable of real-time detection and classification of low-frequency (LF) tonal sounds with a Liquid Robotics wave glider is reported. The goal of the integration was to enable monitoring of LF calls produced by baleen whales over periods of several months. Mechanical noises produced by the platform were significantly reduced by lubricating moving parts with polytetrafluoroethylene, incorporating rubber and springs to decelerate moving parts and shock mounting hydrophones. Flow noise was reduced with the development of a 21-element hydrophone array. Surface noise produced by breaking waves was not mitigated despite experimentation with baffles. Compared to a well-characterized moored passive acoustic monitoring buoy, the system greatly underestimated the occurrence of sei, fin, and North Atlantic right whales during a 37-d deployment, and therefore is not suitable in its current configuration for use in scientific or management applications for these species at this time.


Asunto(s)
Vocalización Animal , Ballenas , Acústica , Animales , Ruido
2.
PLoS One ; 10(6): e0130211, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26107515

RESUMEN

Previous research suggests that nonhuman primates have limited flexibility in the frequency content of their vocalizations, particularly when compared to human speech. Consistent with this notion, several nonhuman primate species have demonstrated noise-induced changes in call amplitude and duration, with no evidence of changes to spectral content. This experiment used broad- and narrow-band noise playbacks to investigate the vocal control of two call types produced by cotton-top tamarins (Saguinus Oedipus). In 'combination long calls' (CLCs), peak fundamental frequency and the distribution of energy between low and high frequency harmonics (spectral tilt) changed in response to increased noise amplitude and bandwidth. In chirps, peak and maximum components of the fundamental frequency increased with increasing noise level, with no changes to spectral tilt. Other modifications included the Lombard effect and increases in chirp duration. These results provide the first evidence for noise-induced frequency changes in nonhuman primate vocalizations and suggest that future investigations of vocal plasticity in primates should include spectral parameters.


Asunto(s)
Ruido , Saguinus/fisiología , Vocalización Animal/fisiología , Estimulación Acústica , Adaptación Psicológica , Animales , Femenino , Masculino , Enmascaramiento Perceptual , Espectrografía del Sonido
3.
Behav Brain Sci ; 37(6): 574-6; discussion 577-604, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25514964

RESUMEN

Ackermann et al. discuss the lack of evidence for vocal control in nonhuman primates. We suggest that nonhuman primates may be capable of achieving greater vocal control than previously supposed. In support of this assertion, we discuss new evidence that nonhuman primates are capable of modifying spectral features in their vocalizations.


Asunto(s)
Comunicación Animal , Evolución Biológica , Comunicación , Primates/fisiología , Habla/fisiología , Animales , Humanos
4.
Biol Rev Camb Philos Soc ; 88(4): 809-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23442026

RESUMEN

Humans and non-human mammals exhibit fundamentally similar vocal responses to increased noise, including increases in vocalization amplitude (the Lombard effect) and changes to spectral and temporal properties of vocalizations. Different research focuses have resulted in significant discrepancies in study methodologies and hypotheses among fields, leading to particular knowledge gaps and techniques specific to each field. This review compares and contrasts noise-induced vocal modifications observed from human and non-human mammals with reference to experimental design and the history of each field. Topics include the effects of communication motivation and subject-specific characteristics on the acoustic parameters of vocalizations, examination of evidence for a proposed biomechanical linkage between the Lombard effect and other spectral and temporal modifications, and effects of noise on self-communication signals (echolocation). Standardized terminology, cross-taxa tests of hypotheses, and open areas for future research in each field are recommended. Findings indicate that more research is needed to evaluate linkages among vocal modifications, context dependencies, and the finer details of the Lombard effect during natural communication. Studies of non-human mammals could benefit from applying the tightly controlled experimental designs developed in human research, while studies of human speech in noise should be expanded to include natural communicative contexts. The effects of experimental design and behavioural context on vocalizations should not be neglected as they may impact the magnitude and type of noise-induced vocal modifications.


Asunto(s)
Comunicación Animal , Ruido , Adaptación Biológica , Animales , Humanos , Espectrografía del Sonido
5.
Artículo en Inglés | MEDLINE | ID: mdl-25411588

RESUMEN

During increased noise, modifications of the acoustic structure of vocalizations (amplitude, temporal, and spectral parameters) may allow release from masking, potentially conferring fitness benefits to vocally flexible signalers. Among primates, humans have demonstrated extreme vocal flexibility during noise, with modifications to all three speech parameters affected by both noise type and motivational state of the signaler. While non-human primates have also demonstrated changes to call amplitude and temporal characteristics, to the best of our knowledge spectral modifications have not been observed and the influence of behavioral context remains unknown. This experiment used playbacks of broad (10 kHz) and narrowband (5 kHz) white noise to investigate the effects of noise level and bandwidth on chirps and combination long calls (CLCs) produced by cotton-top tamarins (Saguinus oedipus). Noise amplitude and frequency content both influenced the structure of vocalizations; modifications included increased call amplitude (the Lombard effect), changes to call durations, and previously undocumented spectral shifts. Behavioral context was also relevant; modifications to CLCs were different from those observed in chirps. These results provide the first evidence of noise-induced spectral shifts in non-human primates, and emphasize the importance of behavioral context in vocal noise compensation.

6.
J Acoust Soc Am ; 131(4): 3173-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22501089

RESUMEN

North Atlantic right whales (Eubalaena glacialis) produce a loud, broadband signal referred to as the gunshot sound. These distinctive sounds may be suitable for passive acoustic monitoring and detection of right whales; however, little is known about the prevalence of these sounds in important right whale habitats, such as the Bay of Fundy. This study investigates the timing and distribution of gunshot sound production on the summer feeding grounds using an array of five marine acoustic recording units deployed in the Bay of Fundy, Canada in mid-summer 2004 and 2005. Gunshot sounds were common, detected on 37 of 38 recording days. Stereotyped gunshot bouts averaged 1.5 h, with some bouts exceeding 7 h in duration with up to seven individuals producing gunshots at any one time. Bouts were more commonly detected in the late afternoon and evening than during the morning hours. Locations of gunshots in bouts indicated that whales producing the sounds were either stationary or showed directional travel, suggesting gunshots have different communication functions depending on behavioral context. These results indicate that gunshots are a common right whale sound produced during the summer months and are an important component in the acoustic communication system of this endangered species.


Asunto(s)
Conducta Animal/fisiología , Vocalización Animal/fisiología , Ballenas/fisiología , Acústica , Migración Animal , Animales , Masculino , Periodicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA