Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet Res Forum ; 11(3): 273-279, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33133465

RESUMEN

Quorum sensing (QS) is a cell density-dependent mechanism used by many pathogenic bacteria for regulating virulence gene expression. Inhibition or interruption of QS by medicinal plant remedies has been suggested as a new strategy for fighting against antibiotic-resistant bacteria. This study aimed to assess the impact of sub-inhibitory concentrations of licochalcone A (LAA) and epigallocatechin-3-gallate (EGCG) as natural plant products on the QS-associated genes (sdiA and luxS) expression. The PCR test was used to confirm the presence of sdiA and luxS genes in 23 S. Typhimurium isolates from poultry. The quantitative real-time PCR assay was used to analyze the expression of sdiA and luxS in S. Typhimurium isolates in response to the treatment with sub-inhibitory concentrations of LAA and EGCG at 45-min time point. All S. Typhimurium isolates showed the presence of sdiA and luxS genes (100%). As result, the expression of QS-related genes was significantly reduced in S. Typhimurium isolates following treatment with LAA and EGCG. In conclusion, LAA and EGCG showed anti-QS activity with down-regulation of both sdiA and luxS genes in S. Typhimurium, suggesting potential therapeutic use of them against salmonellosis. However, it must be pointed out that the safety and efficiency of these compounds need more thorough research.

2.
Iran J Microbiol ; 10(1): 51-58, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29922419

RESUMEN

BACKGROUND AND OBJECTIVES: Salmonellosis due to multi-drug resistant Salmonella Typhimurium with biofilm formation ability is a serious public health threat worldwide. Studies have shown that medicinal plants inhibit the growth of bacterial species. The present study aimed at determining antibiotic resistance pattern and biofilm formation ability of S. Typhimurium isolated from poultry flocks. Moreover, the antibacterial activity of Licochalcone A (LAA) and Epigallocatechin-3-gallate (EGCG) against the studied isolates were investigated in this study. MATERIALS AND METHODS: Antibiotic susceptibility testing of S. Typhimurium RITCC1730 and 23 clinical isolates of S. Typhimurium against 8 antibiotics was performed using standard Kirby-Bauer disc diffusion method. The extent of biofilm formation was measured by Microtiter dish biofilm formation assay. Antimicrobials activities of LAA and EGCG were determined by MIC and MBC assays using microdilution method. RESULTS: The highest antimicrobial resistance was detected against chloramphenicol (52.17%), followed by furazolidone (26.08%), and trimethoprim/sulfamethoxazole (21.73%). All isolates were sensitive to ciprofloxacin (100%), followed by gentamicin, imipenem (95.65%), and cefixime (91.30%). Most of the isolates (78.26%) were able to produce weak biofilm. LAA and EGCG inhibited the growth of S. Typhimurium at the MIC levels of 62.5∼1000 and 1.56∼400 µg/mL, respectively. The MBC value of LAA was >1000 µg/mL, while the corresponding value of EGCG varied from 100 to 800 µg/mL. CONCLUSION: S. Typhimurium isolates revealed a multiple antibiotic resistance with biofilm production ability. As a result, EGCG, and to a lesser extent, LAA displayed potential antibacterial activity against S. Typhimurium and could be considered as useful compounds for the development of antibacterial agents against salmonellosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA