Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(28): 72041-72058, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34989989

RESUMEN

With the advent of new technologies and globalization of business, supply chains have turned into indispensable tools for gaining competitive advantage. The application of new technologies like blockchain can benefit sustainable energy supply chains by improving chain and logistics operations in the areas of trust, transparency and accountability, cooperation, information sharing, financial exchanges, and supply chain integration. However, the efforts to adopt such technologies in supply chains tend to face many challenges and challenges, which can seriously threaten their success. Therefore, it is crucial to carefully examine the challenges to blockchain technology application. This research focuses on identifying the criteria and challenges to the application of blockchain in renewable energy supply chains and also ranks the identified challenges in terms of their capacity to disrupt the process. The applicability of the suggested structure is examined in a case study of the renewable energy supply chain of Iran. In this study, the challenges are evaluated and ranked by the hybrid developed methods by the integration of the concept of gray numbers into the gray stepwise weight assessment ratio analysis (SWARA-Gray) and the gray evaluation based on distance from average solution (EDAS-Gray). Another group of hybrid methods including the gray weighted sum method (WSM-Gray), the gray complex proportional assessment (COPRAS-Gray), and the gray technique for order of preference by similarity to ideal solution (TOPSIS-Gray) is used to validate the results. The rankings obtained from all of these techniques show high degree of correlation. Among the identified challenges, "high investment cost" is found to be the most important challenge to the application of blockchain in sustainable energy supply chains.


Asunto(s)
Cadena de Bloques , Tecnología , Difusión de la Información , Irán
2.
Sci Total Environ ; 863: 160681, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36521596

RESUMEN

Numerical weather prediction models are very important tools in predicting severe weather phenomena such as dust storms. However, the prediction accuracy in these models depends on the options considered in the modeling. In this study, a multi-objective framework is presented to determine the optimal options of the weather research forecasting with chemistry (WRF-Chem) model. For this purpose, a severe dust storm that occurred in the center of Iran is considered and the effect of 10 options including grid (computational domain size, modeling start time, horizontal, vertical and temporal resolution), physical (initial conditions, boundary layer and land surface schemes) and chemical options (dust emission schemes and dust source functions) are investigated. In general, the results showed that the WRF-Chem model has a high ability to model dust storms, but its results depend on the options considered in the modeling. Evaluation of grid options showed that inappropriate selection of domain size and modeling start time can lead to the failure in dust storm forecasting. Also, the land surface scheme has the greatest impact on dust concentration among the physical options. In addition, chemical options have the greatest impact on the dust storm forecasting as well. Based on the proposed multi-objective framework, the optimal options for dust storm modeling were determined. The proposed approach is comprehensive and can be used for other atmospheric/air quality modeling.

3.
Sci Total Environ ; 808: 152109, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34875318

RESUMEN

Dust storms are a common phenomenon in arid and semi-arid regions in West Asia, which has led to high levels of PM10 in local and remote area. The Yazd city in Iran with a high PM10 level located downstream of dust sources in the Middle East and Central Asia. In this study, based on meteorological and PM10 monitoring data, backward trajectory modeling of air parcels related to dust events at Yazd station was performed using the HYSPLIT model in 2012-2019. The trajectory cluster analysis was used to identify the main dust transport pathways and wind systems. Three methods of Cross-referencing Backward Trajectory (CBT), Potential Source Contribution Function (PSCF) and Concentration Weighted Trajectory (CWT) were used to identify the most critical dust sources. Multi-Criteria Decision Making (MCDM) methods were also used to integrate the results. Nine dust sources affecting central Iran were determined, and six criteria from different aspects were considered. To prioritize the dust sources affecting central Iran from four new MCDM methods, including WASPAS, EDAS, ARAS and TOPSIS were used. The results showed that the Levar wind system (51%), the Shamal wind system (32%) and the Prefrontal wind system (18%) were the most important wind systems to cause dust events in central Iran. The MCDM approach to identify dust sources also showed that Dasht-e-Kavir in central Iran was the most critical dust source. The results also showed that in hot seasons (spring and summer), local and Central Asia dust sources and cold seasons (autumn and winter), Middle East dust sources have the greatest impact on dust events in central Iran. Also, a comparison of common receptor-based methods for identifying dust sources showed that CBT, CWT and PSCF were the most appropriate methods for identifying dust sources, respectively.


Asunto(s)
Contaminantes Atmosféricos , Polvo , Contaminantes Atmosféricos/análisis , Toma de Decisiones , Polvo/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA