Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 13418, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591912

RESUMEN

This work aims to scrutinize the effect of the silanization of glass fibers (GF) on the mechanical properties and cathodic disbonding resistance of an epoxy composite coating. Successful silanization was approved based on different characterization techniques, including Fourier transform infrared spectra, field emission-scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. Tensile strength measurement exhibited a significant effect of silanization on the mechanical performance of the fiber-reinforced polymer (FRP). FE-SEM cross-sectional images illustrated improved interfacial bonding between the epoxy matrix and GF upon silanization. Pull-off measurements revealed improved wet adhesion strength of the FRP to the mild steel surface after exposure to the salt spray chamber when the GF were silanized. In addition, silanization revealed enhanced resistance to cathodic delamination (CD). Electrochemical impedance spectroscopy and electrochemical noise assessments proved silanization's significant influence on the FRP's CD resistance.

2.
J Dent Res ; 100(10): 1011-1019, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33906507

RESUMEN

Regenerative engineering has pioneered several novel biomaterials to treat critical-sized bone injuries. However, despite significant improvement in synthetic materials research, some limitations still exist. The constraints correlated with the current grafting methods signify a treatment paradigm shift to osteoinductive regenerative engineering approaches. Because of their intrinsic potential, inductive biomaterials may represent alternative approaches to treating critical bone injuries. Osteoinductive scaffolds stimulate stem cell differentiation into the osteoblastic lineage, enhancing bone regeneration. Inductive biomaterials comprise polymers, calcium phosphate ceramics, metals, and graphene family materials. This review will assess the cellular behavior toward properties of inductive materials.


Asunto(s)
Regeneración Ósea , Ingeniería de Tejidos , Materiales Biocompatibles , Diferenciación Celular , Cerámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA